Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Water-use efficiency and transpiration across European forests during the Anthropocene

Subjects

Abstract

The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by 0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 ± 10 and 22 ± 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: European forest study sites.
Figure 2: Changes in intercellular CO2 concentrations.
Figure 3: Water-use efficiency and transpiration variability relative to 1901–1910.

Similar content being viewed by others

References

  1. Cao, L., Bala, G., Caldeira, K., Nemani, R. & Ban-Weiss, G. Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl Acad. Sci. USA 107, 9513–9518 (2010).

    Article  CAS  Google Scholar 

  2. Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. Forest Meteorol. 189–190, 115–117 (2014).

    Article  Google Scholar 

  3. Leuzinger, S. & Körner, C. Water savings in mature deciduous forest trees under elevated CO2 . Glob. Change Biol. 13, 2498–2508 (2007).

    Article  Google Scholar 

  4. Saurer, M. et al. Spatial variability and temporal trends in water-use efficiency of European forests. Glob. Change Biol. 20, 3700–3712 (2014).

    Article  Google Scholar 

  5. Marshall, J. D. & Monserud, R. A. Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia 105, 13–21 (1996).

    Article  Google Scholar 

  6. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    Article  CAS  Google Scholar 

  7. Koutavas, A. CO2 fertilization and enhanced drought resistance in Greek firs from Cephalonia Island, Greece. Glob. Change Biol. 19, 529–539 (2013).

    Article  Google Scholar 

  8. van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nature Geosci. 8, 24–28 (2015).

    Article  CAS  Google Scholar 

  9. Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    Article  CAS  Google Scholar 

  10. Drake, B. G., Gonzàlez-Meler, M. A. & Long, S. P. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Biol. 48, 609–639 (1997).

    Article  CAS  Google Scholar 

  11. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  12. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  Google Scholar 

  13. Still, C. J., Berry, J. A., Collatz, G. J. & DeFries, R. S. Global distribution of C-3 and C-4 vegetation: Carbon cycle implications. Glob. Biogeochem. Cycle 17, 14 (2003).

    Article  Google Scholar 

  14. Shevliakova, E. et al. Historical warming reduced due to enhanced land carbon uptake. Proc. Natl Acad. Sci. USA 110, 16730–16735 (2013).

    Article  CAS  Google Scholar 

  15. Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    Article  CAS  Google Scholar 

  16. Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    Article  CAS  Google Scholar 

  17. Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    Article  Google Scholar 

  18. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  19. Feng, X. H. Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: A response to atmospheric CO2 concentration. Geochim. Cosmochim. Acta 63, 1891–1903 (1999).

    Article  CAS  Google Scholar 

  20. Treydte, K. et al. Signal strength and climate calibration of a European tree-ring isotope network. Geophys. Res. Lett. 34, L24302 (2007).

    Article  Google Scholar 

  21. Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology Biogeography 20, 597–608 (2011).

    Article  Google Scholar 

  22. Saurer, M., Siegwolf, R. T. W. & Schweingruber, F. H. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob. Change Biol. 10, 2109–2120 (2004).

    Article  Google Scholar 

  23. Niinemets, U., Flexas, J. & Penuelas, J. Evergreens favored by higher responsiveness to increased CO2 . Trends Ecol. Evol. 26, 136–142 (2011).

    Article  Google Scholar 

  24. De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: A model-data intercomparison at two contrasting temperate forest FACE sites. Glob. Change Biol. 19, 1759–1779 (2013).

    Article  Google Scholar 

  25. Klein, T. et al. Association between tree-ring and needle δ13C and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia 144, 45–54 (2005).

    Article  Google Scholar 

  26. Zhao, M. S. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  CAS  Google Scholar 

  27. Piao, S. L. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242–15247 (2007).

    Article  CAS  Google Scholar 

  28. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nature Clim. Change 3, 385–390 (2013).

    Article  CAS  Google Scholar 

  29. Babst, F. et al. Site- and species-specific responses of forest growth to climate across the European continent. Glob. Ecol. Biogeogr. 22, 706–717 (2013).

    Article  Google Scholar 

  30. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  CAS  Google Scholar 

  31. Boettger, T., Haupt, M., Friedrich, M. & Waterhouse, J. S. Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe). Environ. Pollut. 185, 281–294 (2014).

    Article  CAS  Google Scholar 

  32. Holmes, C. D. Air pollution and forest water use. Nature 507, E1–E2 (2014).

    Article  CAS  Google Scholar 

  33. Cowling, S. A. & Field, C. B. Environmental control of leaf area production: Implications for vegetation and land-surface modeling. Glob. Biogeochem. Cycle 17, 1007 (2003)10.1029/2002gb001915

    Article  Google Scholar 

  34. Shongwe, M. E., Graversen, R. G., van Oldenborgh, G. J., van den Hurk, B. & Doblas-Reyes, F. J. Energy budget of the extreme Autumn 2006 in Europe. Clim. Dynam. 36, 1055–1066 (2011).

    Article  Google Scholar 

  35. Cattiaux, J., Douville, H. & Peings, Y. European temperatures in CMIP5: Origins of present-day biases and future uncertainties. Clim. Dynam. 41, 2889–2907 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Körner, S. Seneviratne, and A. Gessler for comments, the European Union projects ISONET (EVK2-2001-00237), Carbo-Extreme (226701) and Millennium (017008), the Swiss National Science Foundation (iTREE CRSII3_136295), and N.J.L. the UK NERC (NE/B501504) and C3W for funding.

Author information

Authors and Affiliations

Authors

Contributions

D.C.F., B.P., M. Saurer, J.E. and G.H.S. designed the study, with input from C.H., G.H. and N.E.Z. D.C.F., B.P. and M. Saurer performed the analyses with input from J.E., C.H. and G.H.S. All authors contributed to discussion, interpretation, and the development of the data set and ISONET program (devised by G.H.S., G.H. and N.J.L.) or the TRENDY model intercomparison project (coordinated by S.S. and P.F.). D.C.F., B.P. and C.H. led the writing of this paper.

Corresponding authors

Correspondence to D. C. Frank or B. Poulter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, D., Poulter, B., Saurer, M. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nature Clim Change 5, 579–583 (2015). https://doi.org/10.1038/nclimate2614

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2614

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology