High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland


Do the wet savannahs and shrublands of Africa provide a large reserve of potential croplands to produce food staples or bioenergy with low carbon and biodiversity costs? We find that only small percentages of these lands have meaningful potential to be low-carbon sources of maize (2%) or soybeans (9.5–11.5%), meaning that their conversion would release at least one-third less carbon per ton of crop than released on average for the production of those crops on existing croplands. Factoring in land-use change, less than 1% is likely to produce cellulosic ethanol that would meet European standards for greenhouse gas reductions. Biodiversity effects of converting these lands are also likely to be significant as bird and mammal richness is comparable to that of the world’s tropical forest regions. Our findings contrast with influential studies that assume these lands provide a large, low-environmental-cost cropland reserve.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cropland and tree cover in Africa’s wet savannahs and shrublands.
Figure 2: Low-carbon potential cropland sites.
Figure 3: Carbon payback times for use of dedicated perennial grasses for ethanol.
Figure 4: Comparison of GS vertebrate diversity with the rest of the world.


  1. 1

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision (ESA Working paper Rome, FAO, 2012); http://go.nature.com/fM9kF2

    Google Scholar 

  2. 2

    Deininger, K. & Byerlee, D. Rising Global Interest in Farmland: Can it Yield Equitable and Sustainable Results? (World Bank, 2011).

    Google Scholar 

  3. 3

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B. & Turkenburg, W. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29, 225–257 (2005).

    Article  Google Scholar 

  5. 5

    van Vuuren, D. P., van Vliet, J. & Stehfest, E. Future bio-energy potential under various natural constraints. Energy Policy 37, 4220–4230 (2009).

    Article  Google Scholar 

  6. 6

    Cai, X., Zhang, X. & Wang, D. Land availability for biofuel production. Environ. Sci. Technol. 45, 334–339 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Chum, H. et al. in IPCC Spec. Rep. Renew. Energy Sources Clim. Change Mitig. (eds Edenhofer, O. et al.) (International Panel on Climate Change, 2011).

    Google Scholar 

  8. 8

    Bauen, M. Bioenergy-A Sustainable and Reliable Energy Source. A Review of Status and Prospects (International Energy Agency, 2009); http://go.nature.com/QX3o1m

    Google Scholar 

  9. 9

    Morris, M. & Byerlee, D. Awakening Africa’s Sleeping Giant (World Bank and FAO, 2009).

    Google Scholar 

  10. 10

    Stevenson, J. R., Villoria, N., Byerlee, D., Kelley, T. & Maredia, M. Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc. Natl Acad. Sci. USA 110, 8363–8368 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Gebara, M. F. & Thuault, A. GHG Mitigation in Brazil’s Land Use Sector (World Resources Institute, 2013).

    Google Scholar 

  12. 12

    Lipinsky, B., Hanson, C., Waite, R. & Searchinger, T. Reducing Food Loss and Waste (World Resources Institute, 2013).

    Google Scholar 

  13. 13

    Wirsenius, S., Hedenus, F. & Mohlin, K. Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects. Climatic Change 108, 159–184 (2011).

    Article  Google Scholar 

  14. 14

    Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Wilkie, D., Shaw, E., Rotberg, F., Morelli, G. & Auzel, P. Roads, development, and conservation in the Congo Basin. Conserv. Biol. 14, 1614–1622 (2000).

    Article  Google Scholar 

  16. 16

    Rosenberger, A., Gingold, B., Prasodjo, R., Alisjahbana, A. & Putraditama, A. How to Change Legal Land Use Classifications to Support More Sustainable Palm Oil Production in Indonesia (World Resources Institute, 2013).

    Google Scholar 

  17. 17

    Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Houghton, R. A. & Hackler, J. L. Carbon Flux to the Atmosphere from Land-Use Changes (TRENDS Compend. Data Glob. Change, 2002); http://www.ornl.gov/w~ebworks/cpr/misc/108689_.pdf

    Google Scholar 

  19. 19

    Tilman, D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. Proc. Natl Acad. Sci. USA 96, 5995–6000 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, 19 (2008).

    Article  Google Scholar 

  22. 22

    Palm, C. A., Vosti, S. A., Sanchez, P. A. & Ericksen, P. J. Slash-And-Burn Agriculture: The Search for Alternatives (Columbia Univ. Press, 2013).

    Google Scholar 

  23. 23

    West, P. C. et al. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl Acad. Sci. USA 107, 19645–19648 (2010).

    CAS  Article  Google Scholar 

  24. 24

    Licker, R. et al. Mind the gap: How do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).

    Article  Google Scholar 

  25. 25

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  26. 26

    Haberl, H. et al. Bioenergy: How much can we expect for 2050? Environ. Res. Lett. 8, 031004 (2013).

    Article  Google Scholar 

  27. 27

    Thomson, A. M., Izaurralde, R. C., West, T., Parrish, D. J. & Tyler, D. D. Simulating Potential Switchgrass Production in the United States (Pacific Northwest National Laboratory, 2009); http://go.nature.com/j5ey88

    Google Scholar 

  28. 28

    Mistry, J. World Savannas: Ecology and Human Use (Prentice Hall, 2000).

    Google Scholar 

  29. 29

    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conserv. Biol. 16, 605–618 (2002).

    Article  Google Scholar 

  30. 30

    Laurance, W. F. et al. The fate of Amazonian forest fragments: A 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article  Google Scholar 

  31. 31

    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Walsh, P. D. et al. Catastrophic ape decline in western equatorial Africa. Nature 422, 611–614 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).

    Article  Google Scholar 

  34. 34

    Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Heckett, T. & Aklilu, N. Agrofuel Development in Ethiopia: Rhetoric, Reality, and Recommendations (Forum for Environment, in partnership with Horn of Africa Regional Environmental Center and Heinrich Boell Stiftung, 2008).

    Google Scholar 

  36. 36

    You, L. et al. What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach. Food Policy 36, 770–782 (2011).

    Article  Google Scholar 

  37. 37

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article  Google Scholar 

Download references


The authors wish to thank N. Walker for encouragement and for helping to organize the workshop that gave rise to this paper, and for financial support, the authors wish to thank the Princeton Environmental Institute Development Grand Challenges Program, the David & Lucile Packard Foundation, the Norwegian Agency for Development Cooperation, the Gordon and Betty Moore Foundation, the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) from the CGIAR Fund and associated donors and the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no 308371.

Author information




T.D.S. wrote the paper and contributed to all analyses. L.E. undertook the biodiversity and land-use analyses and contributed to all other analyses. P.K.T. performed the DSSAT crop modelling. T.B. led the bioenergy analysis and all work involving the LPJmL model. A.N. contributed to land-use analysis and mapping. D.R. contributed to the biodiversity analysis. R.H. carried out bioenergy analysis with the GREET model and food and land-use demand needs in SSA. R.L. performed yield gap analysis. M.H. contributed land-use analysis. All authors contributed to the general paper content, thinking and writing.

Corresponding authors

Correspondence to Timothy D. Searchinger or Lyndon Estes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Searchinger, T., Estes, L., Thornton, P. et al. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nature Clim Change 5, 481–486 (2015). https://doi.org/10.1038/nclimate2584

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing