Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recent reversal in loss of global terrestrial biomass

Abstract

Vegetation change plays a critical role in the Earth’s carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change1,2,3,4. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems5,6,7,8. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998–2002, of which 65% is in forests and 17% in savannahs. Over the period 1993–2012, an estimated −0.07 PgC yr−1 ABC was lost globally, mostly resulting from the loss of tropical forests (−0.26 PgC yr−1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr−1) and tropical savannahs and shrublands (+0.05 PgC yr−1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies1,3,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aboveground biomass carbon stores and density by biome.
Figure 2: Mean annual change in aboveground biomass carbon between 1993 and 2012.
Figure 3: Interannual variations in aboveground biomass carbon (ABC) storage.

Similar content being viewed by others

References

  1. Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).

    Article  Google Scholar 

  2. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  3. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).

    Article  CAS  Google Scholar 

  4. Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013).

    Article  Google Scholar 

  5. Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  Google Scholar 

  6. Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    Article  CAS  Google Scholar 

  7. Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim. Change 2, 182–185 (2012).

    Article  CAS  Google Scholar 

  8. Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).

    Article  CAS  Google Scholar 

  9. Peylin, P. et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    Article  CAS  Google Scholar 

  10. Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).

    Article  Google Scholar 

  11. Kerr, Y. H. & Njoku, E. G. A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space. IEEE Trans. Geosci. Remote Sensing 28, 384–393 (1990).

    Article  Google Scholar 

  12. Guglielmetti, M. et al. Measured microwave radiative transfer properties of a deciduous forest canopy. Remote Sens. Environ. 109, 523–532 (2007).

    Article  Google Scholar 

  13. Owe, M., De Jeu, R. & Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sensing 39, 1643–1654 (2001).

    Article  Google Scholar 

  14. Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P. & van Dijk, A. I. J. M. Global long-term passive microwave satellite-based retrievals of vegetation optical depth. Geophys. Res. Lett. 38, L18402 (2011).

    Google Scholar 

  15. Sellers, P. J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sensing 6, 1335–1372 (1985).

    Article  Google Scholar 

  16. Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    Article  Google Scholar 

  17. Liu, Y. Y., van Dijk, A. I. J. M., McCabe, M. F., Evans, J. P. & de Jeu, R. A. M. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 22, 692–705 (2013).

    Article  Google Scholar 

  18. Koren, I., Remer, L. A. & Longo, K. Reversal of trend of biomass burning in the Amazon. Geophys. Res. Lett. 34, L20404 (2007).

    Article  Google Scholar 

  19. Zamolodchikov, D. G., Grabovskii, V. I. & Kraev, G. N. A twenty year retrospective on the forest carbon dynamics in Russia. Contemp. Probl. Ecol. 4, 706–715 (2011).

    Article  Google Scholar 

  20. Fang, J. et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Change Biol. 20, 2019–2030 (2014).

    Article  Google Scholar 

  21. Liu, Y., de Jeu, R. A. M., van Dijk, A. I. J. M. & Owe, M. TRMM-TMI satellite observed soil moisture and vegetation density (1998–2005) show strong connection with El Niño in eastern Australia. Geophys. Res. Lett. 34, L15401 (2007).

    Google Scholar 

  22. Miralles, D. G. et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nature Clim. Change 4, 122–126 (2014).

    Article  Google Scholar 

  23. Kim, W., Yeh, S. W., Kim, J. H., Kug, J. S. & Kwon, M. The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophys. Res. Lett. 38, L15809 (2011).

    Google Scholar 

  24. Bond, W. J. & Midgley, G. F. Carbon dioxide and the uneasy interactions of trees and savannah grasses. Phil. Trans. R. Soc. B 367, 601–612 (2012).

    Article  CAS  Google Scholar 

  25. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    Article  CAS  Google Scholar 

  26. Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Phil. Trans. R. Soc. B 274, 2753–2759 (2007).

    CAS  Google Scholar 

  27. Buitenwerf, R., Bond, W. J., Stevens, N. & Trollope, W. S. W. Increased tree densities in South African savannas: > 50 years of data suggests CO2 as a driver. Glob. Change Biol. 18, 675–684 (2012).

    Article  Google Scholar 

  28. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  CAS  Google Scholar 

  29. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  CAS  Google Scholar 

  30. Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data (GPCC, 2011); http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V6_100

    Google Scholar 

Download references

Acknowledgements

Y.Y.L. is the recipient of an Australian Research Council Discovery Early Career Researcher Award (DECRA) Fellowship (project number DE140100200). J.G.C. acknowledges the support of the Australian Climate Change Science Program. M.F.M. is funded by the King Abdullah University of Science and Technology. G.W. is supported by the National Natural Science Foundation of China (numbers 41375099 and 91337108). We thank Y. Pan for helping to interpret forest inventory data and S. Saatchi for providing the aboveground biomass map for tropical regions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the development of the paper. Y.Y.L. and A.I.J.M.v.D. designed the study. R.A.M.d.J., Y.Y.L. and G.W. prepared the VOD data set. Y.Y.L. conducted the analysis and wrote the Supplementary Information. A.I.J.M.v.D. and J.G.C. summarized the results and wrote the first draft of the paper, with subsequent addition and improvement by all authors.

Corresponding author

Correspondence to Yi Y. Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., van Dijk, A., de Jeu, R. et al. Recent reversal in loss of global terrestrial biomass. Nature Clim Change 5, 470–474 (2015). https://doi.org/10.1038/nclimate2581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing