Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Energy system transformations for limiting end-of-century warming to below 1.5 °C

A Corrigendum to this article was published on 27 April 2016

This article has been updated


Many impacts projected for a global warming level of 2 °C relative to pre-industrial levels may exceed the coping capacities of particularly vulnerable countries. Therefore, many countries advocate limiting warming to below 1.5 °C. Here we analyse integrated energy–economy–environment scenarios that keep warming to below 1.5 °C by 2100. We find that in such scenarios, energy-system transformations are in many aspects similar to 2 °C-consistent scenarios, but show a faster scale-up of mitigation action in most sectors, leading to observable differences in emission reductions in 2030 and 2050. The move from a 2 °C- to a 1.5 °C-consistent world will be achieved mainly through additional reductions of CO2. This implies an earlier transition to net zero carbon emissions worldwide, to be achieved between 2045 and 2060. Energy efficiency and stringent early reductions are key to retain a possibility for limiting warming to below 1.5 °C by 2100. The window for achieving this goal is small and rapidly closing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emission profiles and temperature outcomes of 1.5 °C-consistent scenarios.
Figure 2: Cumulative carbon emissions by 2050 and 2100.
Figure 3: Global decarbonization overview.
Figure 4: Mitigation costs for 1.5 °C and 2 °C scenarios.
Figure 5: Overview of the relative change in mitigation contributions or characteristics for 1.5 °C-consistent scenarios relative to corresponding 2 °C-consistent scenarios.

Similar content being viewed by others

Change history

  • 17 March 2016

    In the version of this Perspective originally published, the units in Fig. 3a and the corresponding main text should have read kgCO2 GJ−1, not tCO2 GJ−1. This error has been corrected in the online versions of this Perspective.


  1. United Nations Framework Convention on Climate Change (UNFCCC, 1992).

  2. Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011).

    Article  Google Scholar 

  3. Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. M. L. & Yohe, G. (eds) Avoiding Dangerous Climate Change (Cambridge Univ. Press, 2006).

    Google Scholar 

  4. The Cancun Agreements: Outcome of the Work of the Ad Hoc Working Group on Long-Term Cooperative Action under the Convention FCCC/CP/2010/7/Add.1 Decision 1/CP.16 (UNFCCC, 2010).

  5. Submissions from Parties FCCC/KP/AWG/2009/MISC.1/Add.1 (UNFCCC, 2009).

  6. Earth Negotiations Bulletin (IISD Reporting Services, 2008).

  7. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (IPCC, Cambridge Univ. Press, 2014).

  8. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, 2013).

  9. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–185 (2013).

    Article  Google Scholar 

  10. Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci. 7, 709–715 (2014).

    Article  CAS  Google Scholar 

  11. Luderer, G. et al. Economic mitigation challenges: How further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

    Article  Google Scholar 

  12. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013).

    Article  Google Scholar 

  13. Rogelj, J., McCollum, D. L., O'Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nature Clim. Change 3, 405–412 (2013).

    Article  CAS  Google Scholar 

  14. Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).

    Article  Google Scholar 

  15. Ranger, N. et al. Is it possible to limit global warming to no more than 1.5 °C? Climatic Change 111, 973–981 (2012).

    Article  Google Scholar 

  16. Kriegler, E. et al. Diagnostic indicators for integrated assessment models of climate policy. Technol. Forecast. Soc. 90, 45–61 (2015).

    Article  Google Scholar 

  17. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  18. Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Clim. Change 2, 248–253 (2012).

    Article  Google Scholar 

  19. Meinshausen, M., et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  20. Schaeffer, M. et al. Mid- and long-term climate projections for fragmented and delayed-action scenarios. Technol. Forecast. Soc. 90, 257–268 (2015).

    Article  Google Scholar 

  21. Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  22. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

  23. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1–29 (IPCC, Cambridge Univ. Press, 2013).

  24. The Emissions Gap Report 2013 (UNEP, 2013).

  25. Rogelj, J. et al. Emission pathways consistent with a 2 °C global temperature limit. Nature Clim. Change 1, 413–418 (2011).

    Article  Google Scholar 

  26. Mastrandrea, M. D. et al. Guidance Notes for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010).

    Google Scholar 

  27. Jones, C. et al. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth system models under four Representative Concentration Pathways. J. Climate 26, 4398–4413 (2013).

    Article  Google Scholar 

  28. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  29. van Vuuren, D. et al. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Climatic Change 109, 95–116 (2011).

    Article  Google Scholar 

  30. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  31. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  CAS  Google Scholar 

  32. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Article  CAS  Google Scholar 

  33. Solomon, S. et al. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl Acad. Sci. USA 107, 18354–18359 (2010).

    Article  CAS  Google Scholar 

  34. Solomon, S., Plattner. G-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  Google Scholar 

  35. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  36. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 33–115 (IPCC, Cambridge Univ. Press, 2013).

  37. Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (IPCC, Cambridge Univ. Press, 2014).

  38. Weyant, J. P., de la Chesnaye, F. C. & Blanford, G. J. Overview of EMF-21: Multigas mitigation and climate policy. Energ. J. 27, 1–32 (2006).

    Google Scholar 

  39. Blanford, G., Kriegler, E. & Tavoni, M. Harmonization vs. fragmentation: Overview of climate policy scenarios in EMF27. Climatic Change 123, 383–396 (2014).

    Article  CAS  Google Scholar 

  40. Johnson, N. et al. Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants. Technol. Forecast. Soc. 90(A), 89–102 (2014).

    Article  Google Scholar 

  41. Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    Article  CAS  Google Scholar 

  42. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there – energy technology transformation pathways in the EMF27 scenarios. Climatic Change 123, 369–382 (2014).

    Article  Google Scholar 

  43. Riahi, K. et al. in Global Energy Assessment - Toward a Sustainable Future (eds Johansson, T. B. et al.) Ch. 17, 1203–1306 (Cambridge Univ. Press and International Institute for Applied Systems Analysis, 2012).

    Google Scholar 

  44. Luderer, G. et al. The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison. Climatic Change 114, 9–37 (2012).

    Article  Google Scholar 

  45. Pietzcker, R. C. et al. Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 64, 95–108 (2014).

    Article  Google Scholar 

  46. Luderer, G., Bertram, C., Calvin, K., De Cian, E. & Kriegler, E. Implications of weak near-term climate policies on long-term mitigation pathways. Climatic Change (2013).

  47. Riahi, K. et al. Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. 90, 8–23 (2015).

    Article  Google Scholar 

  48. Tavoni, M. & Socolow, R. Modeling meets science and technology: An introduction to a special issue on negative emissions. Climatic Change 118, 1–14 (2013).

    Article  Google Scholar 

  49. Fuss, S. et al. Betting on negative emissions. Nature Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  50. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: Model comparison of drivers, impacts and interactions with other land use based mitigation options. Climatic Change 123, 495–509 (2014).

    Article  Google Scholar 

  51. Kriegler, E. et al. What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 4, 1340008 (2013).

    Article  Google Scholar 

  52. Bouttes, N., Gregory, J. M. & Lowe, J. A. The reversibility of sea level rise. J. Climate 26, 2502–2513 (2012).

    Article  Google Scholar 

  53. Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC, 1998).

  54. Rogelj, J. et al. Copenhagen Accord pledges are paltry. Nature 464, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  55. Kriegler, E. et al. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  56. Meinshausen, M., Wigley, T. M. L. & Raper, S. C. B. Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6 – Part 2: Applications. Atmos. Chem. Phys. 11, 1457–1471 (2011).

    Article  CAS  Google Scholar 

  57. Rogelj, J., Meinshausen, M., Sedláček, J. & Knutti, R. Implications of potentially lower climate sensitivity on climate projections and policy. Environ. Res. Lett. 9, 031003 (2014).

    Article  Google Scholar 

  58. Riahi, K., Gruebler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. 74, 887–935 (2007).

    Article  Google Scholar 

  59. Luderer, G. et al. Description of the REMIND model (Version 1.5) (SSRN, 2013).

    Book  Google Scholar 

Download references


We acknowledge the work by IAM modellers that contributed to the IPCC AR5 scenario database and thank IIASA for hosting the IPCC AR5 scenario database.

Author information

Authors and Affiliations



J.R. and G.L. designed the research with input from all authors. J.R. coordinated the research. J.R., G.L., E.K., V.K. and R.C.P. carried out the research. J.R. and G.L. wrote the first draft of the manuscript. All authors contributed to analysing the results and writing the paper.

Corresponding authors

Correspondence to Joeri Rogelj or Gunnar Luderer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Texts and Figures (PDF 5233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogelj, J., Luderer, G., Pietzcker, R. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Clim Change 5, 519–527 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing