Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantifying the likelihood of a continued hiatus in global warming

Subjects

Abstract

Since the end of the twentieth century, global mean surface temperature has not risen as rapidly as predicted by global climate models1,2,3 (GCMs). This discrepancy has become known as the global warming ‘hiatus’ and a variety of mechanisms1,4,5,6,7,8,9,10,11,12,13,14,15,16,17 have been proposed to explain the observed slowdown in warming. Focusing on internally generated variability, we use pre-industrial control simulations from an observationally constrained ensemble of GCMs and a statistical approach to evaluate the expected frequency and characteristics of variability-driven hiatus periods and their likelihood of future continuation. Given an expected forced warming trend of 0.2 K per decade, our constrained ensemble of GCMs implies that the probability of a variability-driven 10-year hiatus is 10%, but less than 1% for a 20-year hiatus. Although the absolute probability of a 20-year hiatus is small, the probability that an existing 15-year hiatus will continue another five years is much higher (up to 25%). Therefore, given the recognized contribution of internal climate variability to the reduced rate of global warming during the past 15 years, we should not be surprised if the current hiatus continues until the end of the decade. Following the termination of a variability-driven hiatus, we also show that there is an increased likelihood of accelerated global warming associated with release of heat from the sub-surface ocean and a reversal of the phase of decadal variability in the Pacific Ocean.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Observed and simulated GMST.
Figure 2: Probability of GMST trends due to internal variability.
Figure 4: Characteristics of hiatus and post-hiatus periods
Figure 3: Trends in GMST and Niño 3.4 index.

References

  1. Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009)

    Article  Google Scholar 

  2. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  3. Fyfe, J. C., Gillett, N. P. & Zwiers, F. W. Overestimated global warming over the past 20 years. Nature Clim. Change 3, 767–769 (2013).

    Article  Google Scholar 

  4. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  5. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  6. Haywood, J. M., Jones, A. & Jones, G. S. The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model. Atmos. Sci. Lett. 15, 92–96 (2014).

    Article  Google Scholar 

  7. Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 11790–11793 (2011).

    CAS  Article  Google Scholar 

  8. Knight, J. et al. Do global temperature trends over the last decade falsify climate predictions. Bull. Am. Meteorol. Soc. 90, S1–S196 (2009).

    Google Scholar 

  9. Kosaka, Y. & Xie, S-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  Article  Google Scholar 

  10. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  11. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation. J. Clim. 26, 7298–7310 (2013).

    Article  Google Scholar 

  12. Neely, R. et al. Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett. 40, 999–1004 (2013).

    CAS  Article  Google Scholar 

  13. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185–189 (2014).

    CAS  Article  Google Scholar 

  14. Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nature Geosci. 7, 158–160 (2014).

    CAS  Article  Google Scholar 

  15. Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    CAS  Article  Google Scholar 

  16. Solomon, S. et al. The persistently variable background stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    CAS  Article  Google Scholar 

  17. Watanabe, M. et al. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 40, 3175–3179 (2013).

    Article  Google Scholar 

  18. Hawkins, E., Edwards, T. & McNeall, D. Pause for thought. Nature Clim. Change 4, 154–156 (2014).

    Article  Google Scholar 

  19. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Article  Google Scholar 

  20. Katsman, C. & van Oldenborgh, G. J. Tracing the upper ocean’s missing heat. Geophys. Res. Lett. 38, L14610 (2011)

    Google Scholar 

  21. Palmer, M. D., McNeall, D. J. & Dunstone, N. J. Importance of the deep ocean for estimating decadal changes in Earth’s radiation balance. Geophys. Res. Lett. 38, L13707 (2011)

    Article  Google Scholar 

  22. Palmer, M. & McNeall, D. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014).

    Article  Google Scholar 

  23. Vernier, J-P. et al. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, L12807 (2011)

    Article  Google Scholar 

  24. Hansen, J., Sato, M., Kharecha, P. & Schuckmann, K. v. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011).

    CAS  Article  Google Scholar 

  25. Vernier, J-P., Thomason, L. & Kar, J. CALIPSO detection of an Asian tropopause aerosol layer. Geophys. Res. Lett. 38, L07804 (2011)

    Article  Google Scholar 

  26. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earth’s Future 1, 19–32 (2013).

    Article  Google Scholar 

  27. Chen, X. & Tung, K-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).

    CAS  Article  Google Scholar 

  28. Maher, N., Gupta, A. S. & England, M. H. Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophys. Res. Lett. 41, 5978–5986 (2014).

    Article  Google Scholar 

  29. Pan, Y. H. & Oort, A. H. Global climate variations connected with sea surface temperature anomalies in the eastern equatorial pacific ocean for the 1958–73 period. Mon. Weather Rev. 111, 1244–1258 (1983).

    Article  Google Scholar 

  30. Trenberth, K. E., Caron, J. M., Stepaniak, D. P. & Worley, S. Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. 107 (D8), AAC5-1–AAC5-17 (2002).

    Google Scholar 

  31. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012)

    Article  Google Scholar 

  32. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  33. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  34. Rayner, N. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108 10.1029/2002JD002670 (2003)

  35. Forster, P. M. et al. Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J. Geophys. Res. 118, 1139–1150 (2013).

    Google Scholar 

  36. Hyndman, R. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 26, 1–22 (2008).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Table 1) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank I. Edmond and J. Kettleborough for helping download and archive CMIP5 climate model data and E. Hawkins for useful discussions. This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and represents a Met Office contribution to the Natural Environment Research Council DEEP-C project NE/K005480/1.

Author information

Authors and Affiliations

Authors

Contributions

C.D.R., M.C. and M.D.P. conceived the study. C.D.R. and D.M. analysed the data and conducted statistical analyses. All authors contributed to the interpretation of the results and the preparation of the manuscript.

Corresponding author

Correspondence to C. D. Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, C., Palmer, M., McNeall, D. et al. Quantifying the likelihood of a continued hiatus in global warming. Nature Clim Change 5, 337–342 (2015). https://doi.org/10.1038/nclimate2531

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2531

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing