Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unabated planetary warming and its ocean structure since 2006

This article has been updated

Abstract

Increasing heat content of the global ocean dominates the energy imbalance in the climate system1. Here we show that ocean heat gain over the 0–2,000 m layer continued at a rate of 0.4–0.6 W m−2 during 2006–2013. The depth dependence and spatial structure of temperature changes are described on the basis of the Argo Program's2 accurate and spatially homogeneous data set, through comparison of three Argo-only analyses. Heat gain was divided equally between upper ocean, 0–500 m and 500–2,000 m components. Surface temperature and upper 100 m heat content tracked interannual El Niño/Southern Oscillation fluctuations3, but were offset by opposing variability from 100–500 m. The net 0–500 m global average temperature warmed by 0.005 °C yr−1. Between 500 and 2,000 m steadier warming averaged 0.002 °C yr−1 with a broad intermediate-depth maximum between 700 and 1,400 m. Most of the heat gain (67 to 98%) occurred in the Southern Hemisphere extratropical ocean. Although this hemispheric asymmetry is consistent with inhomogeneity of radiative forcing4 and the greater area of the Southern Hemisphere ocean, ocean dynamics also influence regional patterns of heat gain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Globally averaged SST anomaly.
Figure 2: Depth dependence of temperature change.
Figure 3: The spatial pattern of heat gain.
Figure 4: Global ocean heat gain.

Similar content being viewed by others

Change history

  • 05 February 2015

    In the version of this Letter originally published, in the paragraph beginning 'The large interannual variability…' the third sentence should have read: 'The opposing anomalies in the 0–100 and 100–500 m layers are related to El Niño/Southern Oscillation (ENSO) variability in the depth and slope of the equatorial Pacific thermocline3'. This error has been corrected in all versions of the Letter.

References

  1. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 264–265 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Gould, J. et al. Argo profiling floats bring new era of in situ ocean observations. Eos Trans. AGU 85, 185–191 (2004).

    Article  Google Scholar 

  3. Roemmich, D. & Gilson, J. The global ocean imprint of ENSO. Geophys. Res. Lett. 38, L13606 (2011).

    Article  Google Scholar 

  4. Shindell, D. T. Inhomogeneous forcing and transient climate sensitivity. Nature Clim. Change 4, 274–277 (2014).

    Article  CAS  Google Scholar 

  5. Abraham, J. P. et al. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  6. Wijffels, S. E. et al. Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Clim. 21, 5657–5672 (2008).

    Article  Google Scholar 

  7. Davis, R. E., Sherman, J. T. & Dufour, J. Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Ocean. Technol. 18, 982–993 (2001).

    Article  Google Scholar 

  8. Stephens, G. L. et al. An update on Earth’s energy balance in light of the latest global observations. Nature Geosci. 5, 691–696 (2012).

    Article  CAS  Google Scholar 

  9. Loeb, N. G. et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geosci. 5, 110–113 (2012).

    Article  CAS  Google Scholar 

  10. Roemmich, D., Gould, W. J. & Gilson, J. 135 years of global ocean warming between the Challenger Expedition and the Argo Program. Nature Clim. Change 2, 425–428 (2012).

    Article  Google Scholar 

  11. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2,000 m) 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  12. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008).

    Article  CAS  Google Scholar 

  13. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  14. Palmer, M. D., Haines, K., Tett, S. F. B. & Ansell, T. J. Isolating the signal of ocean global warming. Geophys. Res. Lett. 34, L23610 (2007).

    Article  Google Scholar 

  15. Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    Article  CAS  Google Scholar 

  16. Llovel, W., Willis, J. K., Landerer, F. W. & Fukumori, I. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Clim. Change 4, 1031–1035 (2014).

    Article  Google Scholar 

  17. Allan, R. P. et al. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 41, 5588–5597 (2014).

    Article  Google Scholar 

  18. Cheng, L. & Zhu, J. Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett. 41, 7276–7283 (2014).

    Article  Google Scholar 

  19. Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nature Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  20. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 769–772 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  21. Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  22. England, M. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  23. Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nature Clim. Change 4, 911–916 (2014).

    Article  Google Scholar 

  24. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  25. Durack, P. J. & Wijffels, S. E. Fifty year trends in global ocean salinities and their relationship to broad-scale ocean warming. J. Clim. 23, 4342–4362 (2010).

    Article  Google Scholar 

  26. Kaplan, A., Kushnir, Y. & Cane, M. A. Reduced space optimal interpolation of historical marine sea level pressure: 1854–1992. J. Clim. 13, 2987–3002 (2000).

    Article  Google Scholar 

  27. Reynolds, R., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Article  Google Scholar 

  28. Palmer, M. D. & McNeall, D. J. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014).

    Article  Google Scholar 

  29. Chen, X. & Tung, K-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).

    Article  CAS  Google Scholar 

  30. Roemmich, D. et al. Decadal spinup of the South Pacific subtropical gyre. J. Phys. Oceanogr. 37, 162–173 (2007).

    Article  Google Scholar 

  31. Sutton, P. & Roemmich, D. Decadal steric and sea surface height changes in the Southern Hemisphere. Geophys. Res. Lett. 38, L08604 (2011).

    Article  Google Scholar 

  32. Sloyan, B. & Rintoul, S. Circulation, renewal, and modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr. 31, 1005–1030 (2001).

    Article  Google Scholar 

  33. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  34. Trenberth, K. & Fasullo, J. Tracking Earth’s energy. Science 328, 316–317 (2010).

    Article  CAS  Google Scholar 

  35. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  36. Church, J. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  37. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  38. Ducet, N., Le Traon, P. Y. & Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. 105, 19477–19498 (2000).

    Article  Google Scholar 

  39. Barker, P. M., Dunn, J. R., Domingues, C. M. & Wijffels, S. Pressure sensor drifts in Argo and their impacts. J. Atmos. Ocean. Technol. 28, 1036–1049 (2011).

    Article  Google Scholar 

  40. Church, J. A., White, N. J., Coleman, R., Lambeck, K. & Mitrovica, J. X. Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Clim. 17, 2609–2625 (2004).

    Article  Google Scholar 

  41. Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares—Application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The Argo data used here were collected and are made freely available by the International Argo Program and by the national programmes thatcontribute to it. D.R. and J.G., and their part in the Argo Program, were supported by US. Argo through NOAA Grant NA10OAR4310139 (CIMEC/ SIO Argo). J.C., D.M. and S.W. were partly financially supported by the Australian Climate Change Science Program. NOAA_OI_SST_V2 data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. The satellite altimeter SSH products were provided by AVISO with support from the Centre National d’Etudes Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Contributions

All co-author (listed alphabetically) contributions were equal, consisting of the three interpolated forms of the Argo data set plus many thoughts, suggestions and revisions improving the manuscript. The first author assembled the interpolated data sets, created the figures and drafted the manuscript.

Corresponding author

Correspondence to Dean Roemmich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roemmich, D., Church, J., Gilson, J. et al. Unabated planetary warming and its ocean structure since 2006. Nature Clim Change 5, 240–245 (2015). https://doi.org/10.1038/nclimate2513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing