Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Saturation-state sensitivity of marine bivalve larvae to ocean acidification


Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid–base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent on seawater saturation state, and not on carbon dioxide partial pressure or pH. Although other physiological processes are affected by pH, mineral saturation state thresholds will be crossed decades to centuries ahead of pH thresholds owing to nonlinear changes in the carbonate system variables as carbon dioxide is added. Our findings were repeatable for two species of bivalve larvae could resolve discrepancies in experimental results, are consistent with a previous model of ocean acidification impacts due to rapid calcification in bivalve larvae, and suggest a fundamental ocean acidification bottleneck at early life-history for some marine keystone species.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Carbonate chemistry values for the 16 experimental treatments for each of the four experiments grouped by species, plotted against p CO 2 and saturation state, with isopleths of pH plotted in p CO 2 /saturation state space.
Figure 2: Shell development in response to carbonate system variables for both species.
Figure 3: Shell growth in response to carbonate system variables for both species.
Figure 4: Development of prodissoconch I shell in Pacific oyster larvae.
Figure 5: Calculated response of pH and aragonite saturation state to increasing p CO 2 from 200 to 1,600 μatm (triangles) at typical upwelling conditions along the Oregon coast.


  1. 1

    Archer, D., Kheshgi, H. & Maier-Reimer, E. Multiple timescales for neutralization of fossil fuel CO2 . Geophys. Res. Lett. 24, 405–408 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).

    Article  Google Scholar 

  3. 3

    Luethi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Zeebe, R. E. Seawater pH and isotopic paleotemperatures of Cretaceous oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 170, 49–57 (2001).

    Article  Google Scholar 

  5. 5

    Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an organism’s perspective: Multiple system parameters, frequency domains, and habitats. Ann. Rev. Mar. Sci. 6, 221–247 (2014).

    Article  Google Scholar 

  6. 6

    Hendriks, I. E., Duarte, C. M. & Alvarez, M. Vulnerability of marine biodiversity to ocean acidification: A meta-analysis. Estuar. Coast. Shelf Sci. 86, 157–164 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Parker, L. M. et al. Predicting the response of molluscs to the impact of ocean acidification. Biology 2, 651–692 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Gazeau, F. et al. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 160, 2207–2245 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Wittmann, A. C. & Poertner, H. O. Sensitivities of extant animal taxa to ocean acidification. Nature Clim. Change 3, 995–1001 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  11. 11

    Talmage, S. C. & Gobler, C. J. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Natl Acad. Sci. USA 107, 17246–17251 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Thomsen, J. et al. Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7, 3879–3891 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Melzner, F. et al. Food supply and seawater pCO(2) impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6, e24223 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Shumway, S. E. Effect of salinity fluctuation on the osmotic pressure and Na+, Ca2+, and Mg2+ ion concentrations in the hemolymph of bivalve molluscs. Mar. Biol. 41, 153–177 (1977).

    CAS  Article  Google Scholar 

  15. 15

    Heinemann, A. et al. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid–base status, trace elements and delta B-11. Geochem. Geophys. Geosyst. 13, Q01005 (2012).

    Article  Google Scholar 

  16. 16

    Waldbusser, G. G., Bergschneider, H. & Green, M. A. Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Mar. Ecol. Prog. Ser. 417, 171–182 (2010).

    Article  Google Scholar 

  17. 17

    Waldbusser, G. G. et al. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys. Res. Lett. 40, 2171–2176 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Barton, A., Hales, B., Waldbusser, G. G., Langdon, C. & Feely, R. A. The Pacific oyster, Crassostrea gigas shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. Limnol. Oceanogr. 57, 698–710 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Hettinger, A. et al. Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. Ecology 93, 2758–2768 (2012).

    Article  Google Scholar 

  20. 20

    Hettinger, A. et al. Larval carry-over effects from ocean acidification persist in the natural environment. Glob. Change Biol. 19, 3317–3326 (2013).

    Google Scholar 

  21. 21

    Gobler, C. J. & Talmage, S. C. Short and long term consequences of larval stage exposure to constantly and ephemerally elevated carbon dioxide for marine bivalve populations. Biogeosciences 10, 2241–2253 (2013).

    Article  Google Scholar 

  22. 22

    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: Pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Michaelidis, B., Ouzounis, C., Paleras, A. & Pörtner, H. O. Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar. Ecol. Prog. Ser. 293, 109–118 (2005).

    Article  Google Scholar 

  24. 24

    Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser. 373, 203–217 (2008).

    Article  Google Scholar 

  25. 25

    Madshus, I. H. Regulation of intracellular Ph in eukaryotic cells. Biochem. J. 250, 1–8 (1988).

    CAS  Article  Google Scholar 

  26. 26

    Walsh, P. J. & Milligan, C. L. Coordination of metabolism and intracellular acid–base status—ionic regulation and metabolic consequences. Can. J. Zool. Rev. Can. Zool. 67, 2994–3004 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Jury, C. P., Whitehead, R. F. & Szmant, A. M. Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells 1973): Bicarbonate concentrations best predict calcification rates. Glob. Change Biol. 16, 1632–1644 (2010).

    Article  Google Scholar 

  28. 28

    Ries, J. B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 75, 4053–4064 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Comeau, S., Carpenter, R. C. & Edmunds, P. J Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc. R. Soc. B 280, 1–8 (2013).

    Google Scholar 

  30. 30

    Jokiel, P. L. Coral reef calcification: Carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proc. R. Soc. B 280, 1–4 (2013).

    Article  Google Scholar 

  31. 31

    Kniprath, E. Ontogeny of the molluscan shell field—a review. Zool. Scr. 10, 61–79 (1981).

    Article  Google Scholar 

  32. 32

    Timmins-Schiffman, E., O’Donnell, M. J., Friedman, C. S. & Roberts, S. B. Elevated pCO(2) causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar. Biol. 160, 1973–1982 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Moran, A. L. & Manahan, D. T. Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 306, 17–36 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Manahan, D. T. & Crisp, D. J. Autoradiographic studies on the uptake of dissolved amino-acids from sea-water by bivalve larvae. J. Mar. Biol. Assoc. UK 63, 673–682 (1983).

    Article  Google Scholar 

  35. 35

    Gazeau, F. et al. Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS ONE 6, 1–8 (2011).

    Article  Google Scholar 

  36. 36

    Bibby, R., Widdicombe, S., Parry, H., Spicer, J. & Pipe, R. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat. Biol. 2, 67–74 (2008).

    Article  Google Scholar 

  37. 37

    Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).

    Article  Google Scholar 

  39. 39

    Harris, K. E., DeGrandpre, M. D. & Hales, B. Aragonite saturation state dynamics in a coastal upwelling zone. Geophys. Res. Lett. 40, 2720–2725 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Rumrill, S. S. Natural mortality of marine invertebrate larvae. Ophelia 32, 163–198 (1990).

    Article  Google Scholar 

  41. 41

    Ben Kheder, R., Quere, C., Moal, J. & Robert, R. Effect of nutrition on Crassostrea gigas larval development and the evolution of physiological indices Part B: Effects of temporary food deprivation. Aquaculture 308, 174–182 (2010).

    CAS  Article  Google Scholar 

  42. 42

    Kimmel, D. G. & Newell, R. I. E. The influence of climate variation on Eastern oyster (Crassostrea virginica) juvenile abundance in Chesapeake Bay. Limnol. Oceanogr. 52, 959–965 (2007).

    Article  Google Scholar 

  43. 43

    Dumbauld, B. R., Kauffman, B. E., Trimble, A. C. & Ruesink, J. L. The Willapa Bay oyster reserves in Washington state: Fishery collapse, creating a sustainable replacement, and the potential for habitat conservation and restoration. J. Shellfish Res. 30, 71–83 (2011).

    Article  Google Scholar 

  44. 44

    Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Feely, R. A., Klinger, T., Newton, J. A. & Chadsey, M. Scientific Summary of Ocean Acidification in Washington State Marine Waters NOAA OAR Special Report No. 3934 (NOAA-OAR 2012)

  46. 46

    White, M. M., McCorkle, D. C., Mullineaux, L. S. & Cohen, A. L. Early exposure of Bay Scallops (Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS ONE 8, e61065 (2013).

    CAS  Article  Google Scholar 

  47. 47

    Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: Method development and first oceanographic observations. Mar. Chem. 100, 24–38 (2006).

    CAS  Article  Google Scholar 

  48. 48

    Hales, B., Takahashi, T. & Bandstra, L. Atmospheric CO2 uptake by a coastal upwelling system. Glob. Biogeochem. Cycles 19, GB1009 (2005).

    Article  Google Scholar 

  49. 49

    Langdon, C. J., Evans, F., Jacobson, D. & Blouin, M. Yields of cultured Pacific oysters Crassostrea gigas Thunberg improved after one generation of selection. Aquaculture 220, 227–244 (2003).

    Article  Google Scholar 

  50. 50

    American Society for Testing and Materials Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of Saltwater Bivalve Molluscs E724-98 (ASTM International, 2012)

Download references


This work was supported by the National Science Foundation OCE CRI-OA #1041267 to G.G.W., B.H., C.J.L. and B.A.H. The authors would like to thank H. Bergschneider, R. Mabardy, J. Sun, G. Hutchinson and T. Klein for their dedicated efforts on the experimental work, S. Smith for sampling and imaging developing embryos, and J. Jennings for assistance and student training on carbonate analyses. G.G.W. would like to specifically thank T. Sawyer in the OSU Electron Microscope Laboratory for guidance on imaging bivalve embryos. Comments from A. Hettinger and S. E. Kolesar improved an earlier version of this manuscript.

Author information




G.G.W., B.H., C.J.L. and B.A.H. conceived and planned the research. G.G.W. designed and supervised experiments. G.G.W. and B.H. analysed data. P.S. organized study components and P.S., M.W.G., E.L.B., I.G. and C.A.M. developed and carried out the experiments. M.W.G., E.L.B., I.G. and C.A.M. analysed organism and chemistry samples. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to George G. Waldbusser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waldbusser, G., Hales, B., Langdon, C. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Clim Change 5, 273–280 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing