Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-2020 climate agreements in the major economies assessed in the light of global models

Abstract

Integrated assessment models can help in quantifying the implications of international climate agreements and regional climate action. This paper reviews scenario results from model intercomparison projects to explore different possible outcomes of post-2020 climate negotiations, recently announced pledges and their relation to the 2 °C target. We provide key information for all the major economies, such as the year of emission peaking, regional carbon budgets and emissions allowances. We highlight the distributional consequences of climate policies, and discuss the role of carbon markets for financing clean energy investments, and achieving efficiency and equity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emission peaking time.
Figure 2: Regional carbon budgets.
Figure 3: Sectoral mitigation.
Figure 4: Emission targets.
Figure 5: Distribution of mitigation costs.
Figure 6: Investments.

Similar content being viewed by others

References

  1. Blanford, G., Kriegler, E. & Tavoni, M. Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27. Clim. Change 123, 383–396 (2014).

    Article  CAS  Google Scholar 

  2. UNFCCC. Establishment of an Ad Hoc Working Group on the Durban Platform for Enhanced Action. Draft decision -/CP.17 (UNFCCC, 2011).

  3. Pachauri, S. et al. Pathways to achieve universal household access to modern energy by 2030. Environ. Res. Lett. 8, 024015 (2013).

    Article  Google Scholar 

  4. McCollum, D. L., Krey, V. & Riahi, K. An integrated approach to energy sustainability. Nature Clim. Change 1, 428–429 (2011).

    Article  Google Scholar 

  5. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 79–83 (2013). This paper quantifies the uncertainties surrounding climate mitigation costs using an IAM.

    Article  CAS  Google Scholar 

  6. Rogelj, J., McCollum, D. L., O'Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 degrees. Nature Clim. Change 3, 405–412 (2013).

    Article  CAS  Google Scholar 

  7. Rogelj, J., McCollum, D. L. & Riahi, K. The UN's 'Sustainable Energy for All' initiative is compatible with a warming limit of 2 °C. Nature Clim. Change 3, 545–551 (2013).

    Article  Google Scholar 

  8. Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

    Article  Google Scholar 

  9. Den Elzen, M. G. J. & van Vuuren, D. Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs. Proc. Natl Acad. Sci. 104, 17931–17936 (2007).

    Article  CAS  Google Scholar 

  10. Rogelj, J. et al. Emission pathways consistent with a 2 °C global temperature limit. Nature Clim. Change 1, 413–418 (2011).

    Article  Google Scholar 

  11. Riahi, K. et al. Locked into Copenhagen pledges − Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Social Change http://dx.doi.org/10.1016/j.techfore.2013.09.016 (2014).

  12. Kriegler, E. et al. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014). This is one of the latest and largest MIP projects, with a focus on the role of technology for mitigation.

    Article  Google Scholar 

  13. Kriegler, E. et al. What does the 2 °C target imply for a global climate agreement in 2020? The LIMITS study on Durban platform scenarios. Clim. Change Econ. 4, 1340008 (2013).

    Article  Google Scholar 

  14. Tavoni, M. et al. The distribution of the major economies' effort in the Durban platform scenarios. Clim. Change Econ. 4, 1340009 (2013).

    Article  Google Scholar 

  15. Kriegler, E., Tavoni, M., Riahi, K. & van Vuuren, D. P. Introducing the LIMITS special issue. Clim. Change Econ. 4, 1302002 (2013). This paper introduces the special issue of the LIMITS MIP.

    Article  Google Scholar 

  16. Clarke, L. et al. International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Econ. 31, S64–S81 (2009). This is one of the first MIP papers that looked into climate agreements, and its public data set has been used widely.

    Article  Google Scholar 

  17. Kriegler, E. et al. Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technol. Forecast. Social Change. (in the press); available at http://dx.doi.org/10.1016/j.techfore.2013.09.021 (2014).

  18. Jakob, M., Luderer, G., Steckel, J., Tavoni, M. & Monjon, S. Time to act now? Assessing the costs of delaying climate measures and benefits of early action. Clim. Change 114, 79–99 (2012).

    Article  Google Scholar 

  19. Luderer, G., Bertram, C., Calvin, K., Cian, E. & Kriegler, E. Implications of weak near-term climate policies on long-term mitigation pathways. Clim. Change http://dx.doi.org/10.1007/s10584-013-0899-9 (2013).

  20. Luderer, G. et al. On the regional distribution of mitigation costs in a global cap-and-trade regime. Clim. Change 114, 59–78 (2012).

    Article  Google Scholar 

  21. Aldy, J. E. & Stavins, R. N. Climate negotiators create an opportunity for scholars. Science 337, 1043–1044 (2012).

    Article  CAS  Google Scholar 

  22. Edenhofer, O. et al. Identifying Options for a New International Climate Regime Arising from the Durban Platform for Enhanced Action (Harvard Project on Climate Agreements/Mercator Research Institute on Global Commons and Climate Change, 2013).

    Google Scholar 

  23. Ranson, M. & Stavins, R. N. Linkage as a foundation for post-Durban climate policy architecture. Ethics Policy Environ. 15, 272–275 (2012).

    Article  Google Scholar 

  24. Aldy, J. E. & Stavins, R. N. Designing the Post-Kyoto Climate Regime: Lessons from the Harvard Project on International Climate Agreements. http://belfercenter.hks.harvard.edu/publication/18686/designing_the_postkyoto_climate_regime.html (2008). This paper discusses a variety of issues regarding post Kyoto climate policies.

    Google Scholar 

  25. Den Elzen, M. G. J., Lucas, P. L. & van Vuuren, D. Regional abatement action and costs under allocation schemes for emission allowances for achieving low CO2-equivalent concentrations. Clim. Change 90, 243–268 (2008).

    Article  CAS  Google Scholar 

  26. Den Elzen, M. & Höhne, N. Sharing the reduction effort to limit global warming to 2 °C. Clim. Policy 10, 247–260 (2010).

    Article  Google Scholar 

  27. Ekholm, T. et al. Effort sharing in ambitious, global climate change mitigation scenarios. Energy Policy 38, 1797–1810 (2010).

    Article  Google Scholar 

  28. UNFCCC. The Cancun agreements: Outcome of the work of the Ad Hoc Working Group on Long-term Cooperative Action under the Convention. http://unfccc.int/resource/docs/2010/cop16/eng/07a01.pdf#page=2 (2010).

  29. Blanford, G. J., Rose, S. K. & Tavoni, M. Baseline projections of energy and emissions in Asia. Energy Econ. 34, S284–S292 (2012).

    Article  Google Scholar 

  30. Allen, M. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  31. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  32. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Article  CAS  Google Scholar 

  33. Chen, W., Yin, X. & Zhang, H. Towards low carbon development in China: a comparison of national and global models. Clim. Change http://dx.doi.org/10.1007/s10584-013-0937–7 (2013).

  34. Hoogwijk, M. et al. Assessment of bottom-up sectoral and regional mitigation potentials. Energy Policy 38, 3044–3057 (2010).

    Article  Google Scholar 

  35. van der Zwaan, B. C. C. et al. A cross-model comparison of global long-term technology diffusion under a 2 °C climate change control target. Clim. Change Econ., 4, 1340013: 1–24 (2013).

    Google Scholar 

  36. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there — energy technology transformation pathways in the EMF27 scenarios. Clim. Change 123, 369–382 (2014).

    Article  Google Scholar 

  37. Fischedick, M. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) 74 (Cambridge Univ. Press, 2011).

    Google Scholar 

  38. Clarke, L., Krey, V., Weyant, J. & Chaturvedi, V. Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios. Energy Econ. 34, S293–S305 (2012).

    Article  Google Scholar 

  39. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change http://dx.doi.org/10.1007/s10584-013-0926-x (2013).

  40. Rose, S. K. et al. Bioenergy in energy transformation and climate management. Clim. Change 123, 477–493 (2014).

    Article  Google Scholar 

  41. Lucas, P. L., van Vuuren, D., Olivier, J. G. J. & den Elzen, M. G. J. Long-term reduction potential of non-CO2 greenhouse gases. Environ. Sci. Policy 10, 85–103 (2007).

    Article  Google Scholar 

  42. Calvin, K., Clarke, L., Krey, V. & Blanford, G. The role of Asia in mitigating climate change: Results from the Asia Modeling Exercise. Energy Econ. (2012).

  43. Riahi, K. et al. in The Global Energy Assessment: Toward a Sustainable Future (IIASA/Cambridge Univ. Press, 2012).

    Google Scholar 

  44. Kunreuther, H. et al. Risk management and climate change. Nature Clim. Change 3, 447–450 (2013).

    Article  Google Scholar 

  45. Millner, A., Dietz, S. & Heal, G. Ambiguity and climate policy. Natl Bur. Econ. Res. Working Pap. 16050 (2010).

  46. Edenhofer, O. et al. The economics of low stabilization: Model comparison of mitigation strategies and costs. Energy J. 31, 11–48 (2010).

    Google Scholar 

  47. Staub-Kaminski, I., Zimmer, A., Jakob, M. & Marschinski, R. Climate policy in practice: A Typology of obstacles and implications for integrated assessment modeling. Clim. Change Econ. 5, http://dx.doi.org/10.1142/S2010007814400041 (2014).

  48. Höhne, N., Den Elzen, M. G. J. & Escalante, D. Regional greenhouse gas mitigation targets based on effort sharing: A comparison of studies. Clim. Policy 14, 122–147 (2014).

    Article  Google Scholar 

  49. Den Elzen, M. & Höhne, N. Reductions of greenhouse gas emissions in Annex I and non-Annex I countries for meeting concentration stabilisation targets. Clim. Change 91, 249–274 (2008).

    Article  CAS  Google Scholar 

  50. Johansson, D. J. et al. Multi-model Analyses of the Economic and Energy Implications for China and India in a Post-Kyoto Climate Regime. Kiel Working Paper 1808 (Kiel Institute, 2012).

    Google Scholar 

  51. Jiahua, P. Carbon budget for basic needs satisfaction: Implications for international equity and sustainability. World Econ. Polit. 1, 003 (2008).

    Google Scholar 

  52. Ding, Z. L., Duan, X. N., Ge, Q. S. & Zhang, Z. Q. Control of atmospheric CO2 concentrations by 2050: A calculation on the emission rights of different countries. Sci. China Ser. D Earth Sci. 52, 1447–1469 (2009).

    Article  CAS  Google Scholar 

  53. Jewell, J., Cherp, A. & Riahi, K. Energy security under de-carbonization scenarios: An assessment framework and evaluation under different technology and policy choices. Energy Policy 65, 743–760 (2014).

    Article  Google Scholar 

  54. Hof, A. F., Den Elzen, M. G. J. & Van Vuuren, D. P. Environmental effectiveness and economic consequences of fragmented versus universal regimes: what can we learn from model studies? Int. Environ. Agreem. Polit. Law Econ. 9, 39–62 (2009).

    Google Scholar 

  55. Clarke, L. et al. International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Econ. 31 (Suppl. 2), S64–S81 (2009).

    Article  Google Scholar 

  56. Edenhofer, O. et al. The economics of low stabilization: Model comparison of mitigation strategies and costs. Energy J. 31, 11–48 (2010).

    Google Scholar 

  57. Lüken, M. et al. The role of technological availability for the distributive impacts of climate change mitigation policy. Energy Policy 39, 6030–6039 (2011).

    Article  Google Scholar 

  58. Aboumahboub, T. et al. On the regional distribution of climate mitigation costs: the impact of delayed cooperative action. Clim. Change Econ. 05, 1440002 (2014).

    Article  Google Scholar 

  59. OECD. OECD Environmental Outlook to 2030 (OECD, 2008).

  60. Massetti, E. & Tavoni, M. The cost of climate change mitigation policy in eastern Europe and former Soviet Union. Clim. Change Econ. 2, 341–370 (2011).

    Article  Google Scholar 

  61. Van Vuuren, D. et al. Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials. Energy Policy 37, 5125–5139 (2009).

    Article  Google Scholar 

  62. Stern, D. I., Pezzey, J. C. V. & Lambie, N. R. Where in the world is it cheapest to cut carbon emissions? Aust. J. Agric. Resource Econ. 56, 315–331 (2012).

    Article  Google Scholar 

  63. Paltsev, S., Reilly, J., Jacoby, H. D. & Tay, K. H. in Human-Induced Climate Change (Schlesinger, M. E. et al.) 282–293 (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  64. Kober, T., van der Zwaan, B. C. C. & Rosler, H. Emission certificate trade and costs under regional burden-sharing regimes for a 2 °C climate change control target. Clim. Change Econ. 5, 1440001 (2014).

    Article  Google Scholar 

  65. Tavoni, M., Chakravarty, S. & Socolow, R. Safe vs. fair: a formidable trade-off in tackling climate change. Sustainability 4, 210–226 (2012).

    Article  Google Scholar 

  66. IEA. Energy Technology Perspectives 2012 (OECD/IEA, 2012).

  67. Carraro, C., Favero, A. & Massetti, E. Investments and public finance in a green, low carbon, economy. Energy Econ. 34 (Suppl. 1), S15–S28 (2012).

    Article  Google Scholar 

  68. McCollum, D. et al. Energy investments under climate policy: A comparison of global models. Clim. Change Econ. 4, 1340010 (2013).

    Article  Google Scholar 

  69. Bosetti, V., Carraro, C., Massetti, E., Sgobbi, A. & Tavoni, M. Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations. Resource Energy Econ. 31, 123–137 (2009).

    Article  Google Scholar 

  70. IEA. Global Gaps in Clean Energy RD&D: Updates and Recommendations for International Collaboration (IEA, 2010). Available at http://www.iea.org/publications/freepublications/publication/global_gaps.pdf.

  71. Marangoni, G. & M. Tavoni. The clean energy R&D strategy for 2 °C. Clim. Change Econ. 5, 1440003 (2014).

    Article  Google Scholar 

  72. Nemet, G. F. & Kammen, D. M. US energy research and development: Declining investment, increasing need, and the feasibility of expansion. Energy Policy 35, 746–755 (2007).

    Article  Google Scholar 

  73. Popp, D. ENTICE-BR: The effects of backstop technology R&D on climate policy models. Energy Econ. 28, 188–222 (2006).

    Article  Google Scholar 

  74. IMF. Energy Subsidy reform: Lessons and implications. Available at https://www.imf.org/external/np/pp/eng/2013/012813.pdf (2013).

  75. IEA. World Energy Outlook 2012 (OECD/IEA, 2012).

  76. Bowen, A., Campiglio, E. & Tavoni, M. A macroeconomic perspective on climate change mitigation: Meeting the financing challenge. Clim. Change Econ. 5, 1440005 (2014).

    Article  Google Scholar 

  77. Wara, M. Is the global carbon market working? Nature 445, 595–596 (2007).

    Article  CAS  Google Scholar 

  78. Jewell, J. et al. Energy security of China, India, the E.U. and the U.S. under long-term scenarios: Results from six IAMs. Clim. Change Econ. 4, 1340011 (2013).

    Article  Google Scholar 

  79. Cherp, A., Jewell, J., Vinichenko, V., Bauer, N. & De Cian, E. Global energy security under different climate policies, GDP growth rates and fossil resource availabilities. Clim. Change (in the press). Available at http://dx.doi.org/10.1007/s10584-013-0950-x (2013).

  80. Rose, S. K. et al. Non-Kyoto radiative forcing in long-run greenhouse gas emissions and climate change scenarios. Clim. Change 123, 511–525 (2014).

    Article  CAS  Google Scholar 

  81. Bollen, J., van der Zwaan, B. C. C., Brink, C. & Eerens, H. Local air pollution and global climate change: A combined cost-benefit analysis. Resource Energy Econ. 31, 161–181 (2009).

    Article  Google Scholar 

  82. Rafaj, P., Schöpp, W., Russ, P., Heyes, C. & Amann, M. Co-benefits of post-2012 global climate mitigation policies. Mitig. Adapt. Strateg. Glob. Change 18, 801–824 (2013).

    Article  Google Scholar 

  83. Rao, S. et al. Better air for better health: Forging synergies in policies for energy access, climate change and air pollution. Glob. Environ. Change 23, 1122–1130 (2013).

    Article  Google Scholar 

  84. Nemet, G. F., Holloway, T. & Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 5, 014007 (2010).

    Article  CAS  Google Scholar 

  85. Barrett, S. Self-enforcing international environmental agreements. Oxf. Econ. Pap. 46, 878–894 (1994). This provides a classic introduction to the issue of stability of climate agreements.

    Article  Google Scholar 

  86. Carraro, C. & Siniscalco, D. Strategies for the international protection of the environment. J. Public Econ. 52, 309–328 (1993).

    Article  Google Scholar 

  87. Tulkens, H. & Chander, P. The core of an economy with multilateral environmental externalities. Int. J. Game Theory 26, 379–401 (1997).

    Article  Google Scholar 

  88. Finus, M., Van Ierland, E. & Dellink, R. Stability of Climate Coalitions in a Cartel Formation Game. Available at http://papers.ssrn.com/sol3/papers.cfm?abstract_id=447461 (Fondazione Eni Enrico Mattei, 2003).

    Book  Google Scholar 

  89. Fuentes-Albero, C. & Rubio, S. J. Can international environmental cooperation be bought? Eur. J. Operat. Res. 202, 255–264 (2010).

    Article  Google Scholar 

  90. Barrett, S. & Dannenberg, A. Sensitivity of collective action to uncertainty about climate tipping points. Nature Clim. Change 4, 36–39 (2013).

    Article  Google Scholar 

  91. Bosetti, V., Carraro, C., De Cian, E., Massetti, E. & Tavoni, M. Incentives and stability of international climate coalitions: An integrated assessment. Energy Policy 55, 44–56 (2013).

    Article  Google Scholar 

  92. Nagashima, M., Dellink, R., van Ierland, E. & Weikard, H-P. Stability of international climate coalitions: A comparison of transfer schemes. Ecol. Econ. 68, 1476–1487 (2009).

    Article  Google Scholar 

  93. Bréchet, T., Gerard, F. & Tulkens, H. Efficiency vs. stability in climate coalitions: a conceptual and computational appraisal. Energy J. 32, 49 (2011).

    Article  Google Scholar 

  94. Carbone, J. C., Helm, C. & Rutherford, T. F. The case for international emission trade in the absence of cooperative climate policy. J. Environ. Econ. Managem. 58, 266–280 (2009).

    Article  Google Scholar 

  95. Tol, R. S. Climate coalitions in an integrated assessment model. Comput. Econ. 18, 159–172 (2001).

    Article  Google Scholar 

  96. Lessmann, K. et al. The stability and effectiveness of climate coalitions: A comparative analysis of multiple integrated assessment models. FEEM Working Pap. 2014.005 Available at http://services.bepress.com/feem/paper868/ (2014).

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 282846 (LIMITS).

Author information

Authors and Affiliations

Authors

Contributions

M.T., E.K., K.R. and D.V.V. conceived and designed the experiments. All authors performed the experiments. M.T. analysed the data and contributed materials and analysis tools. All authors wrote the paper.

Corresponding author

Correspondence to Massimo Tavoni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures and tables (PDF 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavoni, M., Kriegler, E., Riahi, K. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Clim Change 5, 119–126 (2015). https://doi.org/10.1038/nclimate2475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing