Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Barrier island bistability induced by biophysical interactions



Barrier islands represent about 10% of the world’s coastline1, sustain rich ecosystems, host valuable infrastructure and protect mainland coasts from storms. Future climate-change-induced increases in the intensity and frequency of major hurricanes2 and accelerations in sea-level rise3,4 will have a significant impact on barrier islands5,6—leading to increased coastal hazards and flooding—yet our understanding of island response to external drivers remains limited1,7,8. Here, we find that island response is intrinsically bistable and controlled by previously unrecognized dynamics: the competing, and quantifiable, effects of storm erosion, sea-level rise, and the aeolian and biological processes that enable and drive dune recovery. When the biophysical processes driving dune recovery dominate, islands tend to be high in elevation and vulnerability to storms is minimized. Alternatively, when the effects of storm erosion dominate, islands may become trapped in a perpetual state of low elevation and maximum vulnerability to storms, even under mild storm conditions. When sea-level rise dominates, islands become unstable and face possible disintegration. This quantification of barrier island dynamics is supported by data from the Virginia Barrier Islands, USA and provides a broader context for considering island response to climate change and the likelihood of potentially abrupt transitions in island state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Empirical evidence for barrier island bistability.
Figure 2: Post-storm barrier island recovery.
Figure 3: Bistability of island elevation.
Figure 4: Dynamical states and transitions.


  1. 1

    Stutz, M. L. & Pilkey, O. H. Open-ocean barrier islands: Global influence of climatic, oceanographic, and depositional settings. J. Coast. Res. 272, 207–222 (2011).

    Article  Google Scholar 

  2. 2

    Emanuel, K. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

    CAS  Article  Google Scholar 

  3. 3

    IPCC Climate Change 2014: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2014).

    Google Scholar 

  4. 4

    Sallenger, A. H., Doran, K. S. & Howd, P. A. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Clim. Change 2, 884–888 (2012).

    Article  Google Scholar 

  5. 5

    McNamara, D. E. & Keeler, A. A coupled physical and economic model of the response of coastal real estate to climate risk. Nature Clim. Change 3, 1–4 (2013).

    Article  Google Scholar 

  6. 6

    Woodruff, J. D., Irish, J. L. & Camargo, S. J. Coastal flooding by tropical cyclones and sea-level rise. Nature 504, 44–52 (2013).

    CAS  Article  Google Scholar 

  7. 7

    FitzGerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci 36, 601–647 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Cazenave, A. & Le Cozannet, G. Sea level rise and its coastal impacts. Earth’s Future 2, 1–20 (2013).

    Google Scholar 

  9. 9

    Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geosci. 2, 488–491 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Moore, L. J., List, J. H., Williams, S. J. & Stolper, D. Complexities in barrier island response to sea level rise: Insights from numerical model experiments, North Carolina Outer Banks. J. Geophys. Res. 115, F03004 (2010).

    Article  Google Scholar 

  11. 11

    Oster, D. The Influence of Morphology on Barrier Island Recovery Following Storms: Insights from The Virginia Barrier Islands, Mid-Atlantic Bight Master’s thesis, Univ. Virginia (2012).

  12. 12

    Johnson, J. Geomorphic Consequences of Wave Climate Alteration along Cuspate Coastlines Master’s thesis, Univ. North Carolina (2013).

  13. 13

    Young, D., Porter, J. & Bachmann, C. Cross-scale patterns in shrub thicket dynamics in the Virginia barrier complex. Ecosystems 10, 854–863 (2007).

    Article  Google Scholar 

  14. 14

    Durán, O. & Moore, L. J. Vegetation controls on the maximum size of coastal dunes. Proc. Natl Acad. Sci. USA 110, 17217–17222 (2013).

    Article  Google Scholar 

  15. 15

    Barbour, M., Jong, T. & Pavlik, B. in Physiological Ecology of North American Plant Communities (eds Chabot, B. & Mooney, H.) 296–322 (Springer, 1985).

    Google Scholar 

  16. 16

    Huiskes, A. Biological flora of the British Isles: Ammophila arenaria (L.) Link (Psamma arenaria (L.) Roem. et Schult.; Calamgrostis arenaria (L.) Roth). J. Ecol. 67, 363–382 (1979).

    CAS  Google Scholar 

  17. 17

    Elbelrhiti, H., Claudin, P. & Andreotti, B. Field evidence for surface-wave-induced instability of sand dunes. Nature 437, 720–723 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Sallenger, A. H. Storm impact scale for barrier islands. J. Coast. Res. 16, 890–895 (2000).

    Google Scholar 

  19. 19

    Byrne, M-L. & McCann, S. B. The dunescape of sable island. Can. Geogr.-Geogr. Can. 39, 363–368 (1995).

    Article  Google Scholar 

  20. 20

    Fearnley, S. M., Miner, M. D., Kulp, M., Bohling, C. & Penland, S. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005. Geo-Mar. Lett. 29, 455–466 (2009).

    Article  Google Scholar 

  21. 21

    Wolner, C. W. V. et al. Ecomorphodynamic feedbacks and barrier island response to disturbance: Insights from the Virginia Barrier Islands, Mid-Atlantic Bight, USA. Geomorphology 199, 115–128 (2013).

    Article  Google Scholar 

  22. 22

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  Article  Google Scholar 

  23. 23

    McGlathery, K. J., Reidenbach, M. A., D’Odorico, P. D., Fagherazzi, S. & Porter, J. H. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26, 220–231 (2013).

    Article  Google Scholar 

  24. 24

    Fagherazzi, S., Carniello, S. L., D’Alpaos, L. & Defina, A. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc. Natl Acad. Sci. USA 103, 8337–8341 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Marani, M., Da Lio, C. & D’Alpaos, A. Vegetation engineers marsh morphology through multiple competing stable states. Proc. Natl Acad. Sci. USA 110, 3259–3263 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Walters, D., Moore, L. J., Durán, O., Fagherazzi, S. & Mariotti, G. Interactions between barrier islands and backbarrier marshes affect island system response to sea level rise: Insights from a coupled model. J. Geophys. Res. 119, 2013–2031 (2014).

    Article  Google Scholar 

  27. 27

    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 451, 53–57 (2009).

    Article  Google Scholar 

  28. 28

    Ruggiero, P., Komar, P. D., McDougal, W. G., Marra, J. J. & Beach, R. A. Wave runup, extreme water levels and the erosion of properties backing beaches. J. Coast. Res. 17, 407–419 (2001).

    Google Scholar 

  29. 29

    Larson, M., Kubota, S. & Erikson, K. Swash-zone sediment transport and foreshore evolution: Field experiments and mathematical modeling. Mar. Geol. 212, 61–79 (2004).

    Article  Google Scholar 

  30. 30

    Larson, M., Wise, R. A. & Kraus, N. C. Coastal Overwash, Part 2: Upgrade to SBEACH, ERDC/RSM- TN-15 (US Army Engineer Research and Development Center, 2004).

    Google Scholar 

Download references


Financial support was provided by the Virginia Coast Reserve Long-Term Ecological Research Program (National Science Foundation DEB-123773), the Department of Energy’s Office of Science through the Coastal Center of the National Institute for Climatic Change Research at Tulane University, the Geomorphology and Land use Dynamics Program of the National Science Foundation (EAR-1324973), and the University of North Carolina at Chapel Hill. The authors are grateful to A. B. Murray (Duke University), P. Haff (Duke University) and J. Bruno (University of North Carolina-Chapel Hill) for helpful feedback on this manuscript before submission.

Author information




Both authors contributed extensively to this work.

Corresponding author

Correspondence to Orencio Durán Vinent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Durán Vinent, O., Moore, L. Barrier island bistability induced by biophysical interactions. Nature Clim Change 5, 158–162 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing