Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tales of future weather

An Erratum to this article was published on 25 February 2015

This article has been updated

Abstract

Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations, statistical bias correction, downscaling to the spatial and temporal scales relevant to decision-makers, and then translation into quantities of interest. The veracity of this approach cannot be tested, and it faces in-principle challenges. Alternatively, numerical weather prediction models in a hypothetical climate setting can provide tailored narratives for high-resolution simulations of high-impact weather in a future climate. This 'tales of future weather' approach will aid in the interpretation of lower-resolution simulations. Arguably, it potentially provides complementary, more realistic and more physically consistent pictures of what future weather might look like.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 28 January 2015

    In the print version of this Perspective, the last sentence in Box 1 was cut off, and should have read "The model information of this specific case added with 'what-if' scenarios of sea-level rise and on changes in extreme rainfall have been provided to water managers and now aid in designing adaptation measures in a realistic setting." This error has been corrected in the online versions.

References

  1. 1

    Zeid, A., Egeland J., Chissano J. (eds) Climate Knowledge for Action: a Global Framework for Climate Services and Empowering the Most Vulnerable (World Meteorological Organization, 2011).

    Google Scholar 

  2. 2

    Frigg, R., Stainforth, D. A. & Smith, L. A. The myopia of imperfect climate models: the case of UKCP09. Philos. Sci. 80, 886–897 (2013).

    Article  Google Scholar 

  3. 3

    Smith, L. A. What might we learn from climate forecasts? Proc. Natl Acad. Sci. USA 4, 2487–2492 (2002).

    Article  Google Scholar 

  4. 4

    Stainforth, D. A. et al. Confidence, uncertainty and decision-support relevance in climate predictions. Phil. Trans. R. Soc. A 365, 2145–2161 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Kunreuther, H. et al. Risk management and climate change. Nature Clim. Change, 3, 447–450 (2013).

    Article  Google Scholar 

  6. 6

    te Linde, A. H., Bubeck, P., Dekkers, J. E. C., de Moel, H. & Aerts, J. C. J. H. Future flood risk estimates along the river Rhine. Nat. Hazards Earth Syst. Sci. 11, 459–473 (2011).

    Article  Google Scholar 

  7. 7

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  8. 8

    Dessai, S., Hulme, M., Lempert, R. & Pielke, R. Jr Do we need more precise and accurate predictions in order to adapt to a changing climate? Eos 90 (13), 111–112 (2009).

    Article  Google Scholar 

  9. 9

    Goddard, L. et al. Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol. 21, 1111–1152 (2001).

    Article  Google Scholar 

  10. 10

    van Oldenborgh, G. J., Doblas-Reyes, F. J., Wouters, B. & Hazeleger, W. Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim. Dynam. 38, 1263–1280 (2012).

    Article  Google Scholar 

  11. 11

    Hazeleger, W. et al. Predicting multiyear north Atlantic ocean variability. J. Geophys. Res. 118, 1087–1098 (2013).

    Article  Google Scholar 

  12. 12

    Daron, J. D. & Stainforth, D. A. On predicting climate under climate change. Environ. Res. Lett. 8, 034021 (2013).

    Article  Google Scholar 

  13. 13

    Suckling, E. B. & Smith, L. A. An evaluation of decadal probability forecasts from state-of-the-art climate models. J. Clim. 26, 9334–9347 (2013).

    Article  Google Scholar 

  14. 14

    Buizza, R. et al. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction Syst. Mon. Weath. Rev. 5, 1076–1097 (2005).

    Article  Google Scholar 

  15. 15

    Smith, L. A., Du, H., Suckling, E. B. & Niehoerster, F. Probabilistic skill in ensemble seasonal forecasts. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2403 (2014).

  16. 16

    Haasnoot, M. & Middelkoop, H. A history of futures: A review of scenario use in water policy studies in the Netherlands. Environ. Sci. Pol. 19–20, 108–120 (2012).

    Article  Google Scholar 

  17. 17

    Jenkins, G. J. et al. UK Climate Projections: Briefing Report (Met Office Hadley Centre, 2009).

    Google Scholar 

  18. 18

    Held, I. The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc. 86, 1609–1614 (2005).

    Article  Google Scholar 

  19. 19

    van den Hurk, B. et al. New climate change scenarios for the Netherlands. Wat. Sci. Technol. 56, 27–33 (2007).

    CAS  Article  Google Scholar 

  20. 20

    van den Hurk, B. et al. Drivers of mean climate change around the Netherlands derived from CMIP5. Clim. Dynam. 42, 1683–1697 (2013).

    Article  Google Scholar 

  21. 21

    Swiss Climate Change Scenarios CH2011 (C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, 2011).

  22. 22

    Climate Change in Australia (CSIRO, 2007).

  23. 23

    Berkhout, F., Hertin, J. & Jordan, A. Socio-economic futures in climate change impact assessment: using scenarios as 'learning machines'. Glob. Environ. Change 12, 83–89 (2002).

    Article  Google Scholar 

  24. 24

    Vasileiadou, E., & Botzen, W. J. W. Communicating adaptation with emotions: the role of intense experiences in raising concern about extreme weather. Ecol. Soc. 19, 36 (2014).

    Article  Google Scholar 

  25. 25

    Haarsma, R. J. et al. More hurricanes to hit Western Europe due to global warming. Geophys. Res. Lett. 40, 1783–1788 (2013).

    Article  Google Scholar 

  26. 26

    Attema, J. J., Loriaux, J. M. & Lenderink, G. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model. Environ. Res. Lett. 9, 14003 (2014).

    Article  Google Scholar 

  27. 27

    Hohenegger, C., Brockhaus, P. & Schär, C. Towards climate simulations at cloud-resolving scales. Meteorol. Z. 17, 382–394 (2008).

    Article  Google Scholar 

  28. 28

    Kendon, E. M. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  29. 29

    van Haren, R., van Oldenborgh, G. J., Lenderink, G., Collins, M. & Hazeleger, W. SST and circulation trend biases cause an underestimation of European precipitation trends Clim. Dynam. 40, 1–20 (2012).

    Article  Google Scholar 

  30. 30

    Nakicenovic, N. & Swart, R. J. (eds) IPCC Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).

    Google Scholar 

  31. 31

    Moss, R. et al. A new approach to scenario development for the IPCC Fifth Assessment Report. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  32. 32

    O'Neill, B. C. et al. A new scenario framework for climate change research: The concept of shared socio-economic pathways. Climatic Change 122, 387–400 (2014).

    Article  Google Scholar 

  33. 33

    Bakker, A. M. R., van den Hurk, B. J. J. M., Bessembinder, J. J. E. & Kroon, T. Reduced Climate forcings for large-scale hydrological scenario calculations. Environ. Mod. Softw. 26, 797–803 (2011).

    Article  Google Scholar 

  34. 34

    Siegel, J. M., Shoaf, K. I., Afifi, A. A. & Bourque, L. B. Surviving two disasters: does reaction to the first predict response to the second? Environ. Behav. 35, 637–654 (2003).

    Article  Google Scholar 

  35. 35

    Lenderink, G., van Meijgaard, E. & Selten, F. Intense coastal rainfall in the Netherlands in response to high sea surface temperatures: analysis of the event of August 2006 from the perspective of a changing climate. Clim. Dynam. 32, 19–33 (2009).

    Article  Google Scholar 

  36. 36

    Basolo, V., Steinberg, L. J., Burby, R. J., Levine, J., Cruz, A. M. & Huang, C. The effects of confidence in government and information on perceived and actual preparedness for disasters. Environ. Behav. 41, 338–364 (2009).

    Article  Google Scholar 

  37. 37

    Rasmijn, L. M., van der Schrier, G., Barkmeijer, J., Sterl, A. & Hazeleger, W. On the use of the forced sensitivity method in climate studies. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2402 (2014).

  38. 38

    Kinter, J. L. et al. Revolutionizing climate modeling with project Athena: a multi-institutional, international collaboration. Bull. Am. Meteorol. Soc. 94, 231–245 (2013).

    Article  Google Scholar 

  39. 39

    Hazeleger, W. et al. EC-Earth: a seamless earth-system prediction approach in action. Bull. Am. Meteorol. Soc. 91, 1357–1363 (2010).

    Article  Google Scholar 

  40. 40

    Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci. 1, 511–514 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, L08707 (2009).

    Article  Google Scholar 

  42. 42

    De Vries, H., Woollings, T. J., Haarsma, R. J. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dynam. 41, 2643–2654 (2013).

    Article  Google Scholar 

  43. 43

    Funtowicz, S. O. & Ravetz, J. R. Uncertainty and Quality in Science for Policy (Kluwer, 1990).

    Book  Google Scholar 

  44. 44

    van der Sluijs, J. P., Petersen, A. C., Janssen, P. H. M., Risbey, J. S. & Ravetz, J. R. Exploring the quality of evidence for complex and contested policy decisions. Environ. Res. Lett. 3, 024008 (2008).

    Article  Google Scholar 

  45. 45

    Petersen, A. C. Simulating Nature: A Philosophical Study of Computer-Simulation Uncertainties and Their Role in Climate Science and Policy Advice 2nd edn (CRC Press, 2012).

    Book  Google Scholar 

  46. 46

    Hazeleger, W. et al. EC-Earth: A Seamless Earth-System Prediction Approach in Action. Bull. Am. Meteorol. Soc. 91, 1357–1363 (2010).

    Article  Google Scholar 

  47. 47

    de Winter, R. C., Sterl, A. & Ruessink, B. G. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs. J. Geophys. Res. Atmos. 118, 1601–1612 (2013).

    Article  Google Scholar 

  48. 48

    Kew, S. F., Selten, F. M., Lenderink, G. & Hazeleger, W. The simultaneous occurrence of surge and discharge extremes for the Rhine delta. Nat. Hazards Earth Syst. Sci. 13, 2017–2029 (2013).

    Article  Google Scholar 

  49. 49

    Trenberth, K. E. Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change 42, 327–339 (1999).

    Article  Google Scholar 

  50. 50

    Katsman, C. A. et al. Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta - the Netherlands as an example. Climatic Change 109, 617–649 (2011).

    Article  Google Scholar 

  51. 51

    Katsman, C. A., Hazeleger, W., Drijfhout, S. S., van Oldenborgh G. J. & Burgers, G. J. H. Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt. Climatic Change 91, 351–374 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Jan Gooijer of regional water authority Noorderzijlvest for providing the observations shown in Figure B1 and his feedback on the use of Tales in practice. W.H., G.J.v.O., and B.vd.H. were co-sponsored by Knowledge for Climate Theme 6 project E.M, and E. V. were co-sponsored NWO/KvK project Bridging the Gap between stakeholders and climate scientists (NWO 830.10.008). L.A.S. and D.A.S. acknowledge the support of LSE's Grantham Research Institute on Climate Change and the Environment, LSE's Centre for Climate Change and Economics and Policy funded by the ESRC and Munich Re, and UK EPSRC grant EP/K013661/1. L.A.S. is grateful for the continuing support of the Master and Fellows of Pembroke College, Oxford.

Author information

Affiliations

Authors

Contributions

W.H., D.S., A.P., B. vd. H.,G.J. v O., and L.S. developed the main idea of Tales, W.H. wrote the majority of the first draft; A.P., W.H., E.M., and E.V. provided insights on interactions between climate scientists and users reflected in the text; G.J.v.O. provided input on the forecast quality section; B.vd.H. provided insights on local vulnerability reflected in the article and the box; L.S. and D.S. provided insights on the impacts and identification of model inadequacies in climate simulation models. All authors contributed at different stages to drafts of the article with a major final edit by D.S. and L.S.

Corresponding author

Correspondence to W. Hazeleger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazeleger, W., van den Hurk, B., Min, E. et al. Tales of future weather. Nature Clim Change 5, 107–113 (2015). https://doi.org/10.1038/nclimate2450

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing