Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Assessing species vulnerability to climate change

Abstract

The effects of climate change on biodiversity are increasingly well documented, and many methods have been developed to assess species' vulnerability to climatic changes, both ongoing and projected in the coming decades. To minimize global biodiversity losses, conservationists need to identify those species that are likely to be most vulnerable to the impacts of climate change. In this Review, we summarize different currencies used for assessing species' climate change vulnerability. We describe three main approaches used to derive these currencies (correlative, mechanistic and trait-based), and their associated data requirements, spatial and temporal scales of application and modelling methods. We identify strengths and weaknesses of the approaches and highlight the sources of uncertainty inherent in each method that limit projection reliability. Finally, we provide guidance for conservation practitioners in selecting the most appropriate approach(es) for their planning needs and highlight priority areas for further assessments.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Taxonomic focus of vulnerability assessments in the analysed papers.
Figure 2: Ecoregional global concentrations of terrestrial and marine climate change vulnerable species.
Figure 3: Trends and biases in taxonomic groups assessed and approaches used by continent.

References

  1. IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    CAS  Google Scholar 

  3. Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).

    Google Scholar 

  4. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–849 (2010).

    CAS  Google Scholar 

  5. Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nature Clim. Change. 1, 401–406 (2011).

    Google Scholar 

  6. Réale, D., McAdam, A. G., Boutin, S. & Berteaux, D. Genetic and plastic responses of a northern mammal to climate change. Proc. Biol. Sci. 270, 591–596 (2003).

    Google Scholar 

  7. Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    Google Scholar 

  8. Auer, S. K. & King, D. I. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Glob. Ecol. Biogeogr. 23, 867–875 (2014).

    Google Scholar 

  9. Chevin, L-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    Google Scholar 

  10. Midgley, G. F. et al. BioMove — An integrated platform simulating the dynamic response of species to environmental change. Ecography. 33, 612–616 (2010).

    Google Scholar 

  11. Chessman, B. C. Identifying species at risk from climate change: Traits predict the drought vulnerability of freshwater fishes. Biol. Conserv. 160, 40–49 (2013).

    Google Scholar 

  12. Oppenheimer, M. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 19 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  13. Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, 2621–6 (2008).

    CAS  Google Scholar 

  14. Foden, W. B. et al. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427 (2013).

    CAS  Google Scholar 

  15. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–8 (2011).

    CAS  Google Scholar 

  16. Barbet-Massin, M., Thuiller, W. & Jiguet, F. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Change Biol. 18, 881–890 (2012).

    Google Scholar 

  17. Hughes, A. C., Satasook, C., Bates, P. J. J., Bumrungsri, S. & Jones, G. The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Glob. Change Biol. 18, 1854–1865 (2012).

    Google Scholar 

  18. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    CAS  Google Scholar 

  19. Ameca y Juárez, E. I., Mace, G. M., Cowlishaw, G., Cornforth, W. A. & Pettorelli, N. Assessing exposure to extreme climatic events for terrestrial mammals. Conserv. Lett. 6, 145–153 (2013).

    Google Scholar 

  20. Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–125 (2008).

    Google Scholar 

  21. Garnett, S. et al. Climate Change Adaptation Strategies for Australian Birds (National Climate Change Adaptation Research Facility, 2013).

    Google Scholar 

  22. Yu, D. et al. Global climate change will severely decrease potential distribution of the East Asian coldwater fish Rhynchocypris oxycephalus (Actinopterygii, Cyprinidae). Hydrobiologia 700, 23–32 (2013).

    Google Scholar 

  23. Buckley, L. B. The range implications of lizard traits in changing environments. Glob. Ecol. Biogeogr. 19, 452–464 (2010).

    Google Scholar 

  24. Iverson, L. R., Prasad, A. M., Matthews, S. N. & Peters, M. P. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems 14, 1005–1020 (2011).

    Google Scholar 

  25. Crossman, N. D., Bryan, B. A. & Summers, D. M. Identifying priority areas for reducing species vulnerability to climate change. Divers. Distrib. 18, 60–72 (2012).

    Google Scholar 

  26. Visconti, P. et al. Future hotspots of terrestrial mammal loss. Phil. Trans. R. Soc. London B 366, 2693–2702 (2011).

    Google Scholar 

  27. Vieilledent, G., Cornu, C., Cuní Sanchez, A., Leong Pock-Tsy, J-M. & Danthu, P. Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: Towards new conservation priorities. Biol. Conserv. 166, 11–22 (2013).

    Google Scholar 

  28. Songer, M., Delion, M., Biggs, A. & Huang, Q. Modeling impacts of climate change on giant panda habitat. Int. J. Ecol. 2012, 1–12 (2012).

    Google Scholar 

  29. Pearson, R. G. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704–1711 (2006).

    Google Scholar 

  30. Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E. & Possingham, H. P. Conservation planning under climate change: Toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol. Conserv. 144, 2020–2030 (2011).

    Google Scholar 

  31. Tuanmu, M-N. et al. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains. Nature Clim. Change. 3, 249–253 (2012).

    Google Scholar 

  32. Keith, D. A. et al. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol. Lett. 4, 560–563 (2008).

    Google Scholar 

  33. Fordham, D. A., Akçakaya, H. R., Araújo, M. B., Keith, D. A. & Brook, B. W. Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography 36, 956–964 (2013).

    Google Scholar 

  34. Guidelines for Using the IUCN Red List Categories and Criteria Version 10 (IUCN Standards and Petitions Subcommittee, 2013); http://www.iucnredlist.org/documents/RedListGuidelines.pdf.

  35. Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. Biol. Sci. 277, 1259–1266 (2010).

    Google Scholar 

  36. Gregory, R. D. et al. An indicator of the impact of climatic change on European bird populations. PLoS One 4, e4678 (2009).

    Google Scholar 

  37. Huntley, B., Altwegg, R., Barnard, P., Collingham, Y. C. & Hole, D. G. Modelling relationships between species spatial abundance patterns and climate. Glob. Ecol. Biogeogr. 21, 668–681 (2012).

    Google Scholar 

  38. Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. http://dx.doi.org/10.1111/conl.12159 (2015).

  39. Hunter, C. M. et al. Climate change threatens polar bear populations: a stochastic demographic analysis. Ecology 91, 2883–2897 (2010).

    Google Scholar 

  40. Anderson, B. J. et al. Dynamics of range margins for metapopulations under climate change. Proc. Biol. Sci. 276, 1415–1420 (2009).

    CAS  Google Scholar 

  41. Jenouvrier, S. et al. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proc. Natl Acad. Sci. USA 106, 1844–1847 (2009).

    CAS  Google Scholar 

  42. Carroll, C. Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: marten and lynx in the northern Appalachians. Conserv. Biol. 21, 1092–1104 (2007).

    Google Scholar 

  43. Maschinski, J., Baggs, J. E., Quintana-Ascencio, P. F. & Menges, E. S. Using population viability analysis to predict the effects of climate change on the extinction risk of an endangered limestone endemic shrub, Arizona cliffrose. Conserv. Biol. 20, 218–228 (2006).

    Google Scholar 

  44. Thompson, L. C. et al. Water management adaptations to prevent loss of spring-run chinook salmon in california under climate change. J. Wat. Resour. Plan. Manag. 138, 465–478 (2012).

    Google Scholar 

  45. Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nature Clim. Change 3, 899–903 (2013).

    Google Scholar 

  46. Vedder, O., Bouwhuis, S. & Sheldon, B. C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol. 11, e1001605 (2013).

    CAS  Google Scholar 

  47. Young, B. E. et al. in Wildlife Conservation in a Changing Climate (eds. Brodie, J., Post, E. & Doak, D.) 129–150 (Univ. Chicago Press, 2012).

    Google Scholar 

  48. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Google Scholar 

  49. Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Google Scholar 

  50. Lawler, J. J., Shafer, S. L., Bancroft, B. A. & Blaustein, A. R. Projected climate impacts for the amphibians of the Western hemisphere. Conserv. Biol. 24, 38–50 (2009).

    Google Scholar 

  51. Howard, C., Stephens, P. A., Pearce-Higgins, J. W., Gregory, R. D. & Willis, S. G. Improving species distribution models: the value of data on abundance. Methods Ecol. Evol. 5, 506–513 (2014).

    Google Scholar 

  52. Garcia, R. A., Burgess, N. D., Cabeza, M., Rahbek, C. & Araújo, M. B. Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Glob. Change Biol. 18, 1253–1269 (2012).

    Google Scholar 

  53. Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Clim. Change 3, 989–994 (2013).

    Google Scholar 

  54. Hole, D. G. et al. Toward a management framework for networks of protected areas in the face of climate change. Conserv. Biol. 25, 305–315 (2011).

    Google Scholar 

  55. Jeschke, J. M. & Strayer, D. L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. NY Acad. Sci. 1134, 1–24 (2008).

    Google Scholar 

  56. Harrison, P. A., Berry, P. M., Butt, N. & New, M. Modelling climate change impacts on species' distributions at the European scale: implications for conservation policy. Environ. Sci. Policy 9, 116–128 (2006).

    Google Scholar 

  57. Sánchez-Fernández, D., Lobo, J. M. & Hernández-Manrique, O. L. Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles. Divers. Distrib. 17, 163–171 (2011).

    Google Scholar 

  58. Cole, K. L. et al. Past and ongoing shifts in Joshua tree distribution support future modeled range contraction. Ecol. Appl. 21, 137–49 (2011).

    Google Scholar 

  59. Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106 (Suppl), 19729–19736 (2009).

    CAS  Google Scholar 

  60. Bagchi, R. et al. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Glob. Change Biol. 19, 1236–48 (2013).

    Google Scholar 

  61. Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30, 751–777 (2006).

    Google Scholar 

  62. Guisan, A. & Rahbek, C. SESAM - a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J. Biogeogr. 38, 1433–1444 (2011).

    Google Scholar 

  63. Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).

    CAS  Google Scholar 

  64. Dubuis, A. et al. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers. Distrib. 17, 1122–1131 (2011).

    Google Scholar 

  65. Tyre, A. J., Possingham, H. P. & Lindenmayer, D. B. Inferring process from pattern: can territory occupancy provide information about life history parameters? Ecol. Appl. 11, 1722–1737 (2001).

    Google Scholar 

  66. Boitani, L. et al. What spatial data do we need to develop global mammal conservation strategies? Phil. Trans. R. Soc. Lond. B 366, 2623–2632 (2011).

    Google Scholar 

  67. Peterson, A. T. & Martínez-Meyer, E. Geographic evaluation of conservation status of African forest squirrels (Sciuridae) considering land use change and climate change: the importance of point data. Biodivers. Conserv. 16, 3939–3950 (2007).

    Google Scholar 

  68. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Google Scholar 

  69. Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).

    Google Scholar 

  70. Best, A. S., Johst, K., Münkemüller, T. & Travis, M. J. Which species will succesfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos 116, 1531–1539 (2007).

    Google Scholar 

  71. Amstrup, S. C., Marcot, B. G. & Douglas, D. C. Forecasting the Range Wide Status of Polar Bears at Selected Times in the 21st Century (US Department of the Interior, US Geological Survey, 2007).

    Google Scholar 

  72. Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. Lond. B 367, 1665–1679 (2012).

    Google Scholar 

  73. Wilson, R. J., Davies, Z. G. & Thomas, C. D. Modelling the effect of habitat fragmentation on range expansion in a butterfly. Proc. Biol. Sci. 276, 1421–1427 (2009).

    Google Scholar 

  74. Morin, X. & Thuiller, W. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology 90, 1301–1313 (2009).

    Google Scholar 

  75. Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12, 334–350 (2009).

    Google Scholar 

  76. Monahan, W. B. A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients. PLoS One 4, e7921 (2009).

    Google Scholar 

  77. Young, B., Byers, E., Gravuer, K., Hall, K., Hammerson, G. & Redder, A. Guidelines for Using the NatureServe Climate Change Vulnerability Index (NatureServe, 2010).

    Google Scholar 

  78. Gardali, T., Seavy, N. E., DiGaudio, R. T. & Comrack, L. A. A climate change vulnerability assessment of California's at-risk birds. PLoS One 7, e29507 (2012).

    CAS  Google Scholar 

  79. Rowland, E. L., Davison, J. E. & Graumlich, L. J. Approaches to evaluating climate change impacts on species: a guide to initiating the adaptation planning process. Environ. Manage. 47, 322–337 (2011).

    Google Scholar 

  80. Moyle, P. B., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach. PLoS One 8, e63883 (2013).

    Google Scholar 

  81. Pacifici, M. et al. Generation length for mammals. Nature Conserv. 5, 89–94 (2013).

    Google Scholar 

  82. Lankford, A. J., Svancara, L. K., Lawler, J. J. & Vierling, K. Comparison of climate change vulnerability assessments for wildlife. Wildlife Soc. Bull. 38, 386–394 (2014).

    Google Scholar 

  83. Thomas, C. D. et al. A framework for assessing threats and benefits to species responding to climate change. Methods Ecol. Evol. 2, 125–142 (2011).

    Google Scholar 

  84. Santini, L. et al. Ecological correlates of dispersal distance in terrestrial mammals. Hystrix 24, 1–6 (2013).

    Google Scholar 

  85. Maclean, I. M. D. & Wilson, R. J. Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl Acad. Sci. USA 108, 12337–12342 (2011).

    CAS  Google Scholar 

  86. Red List Categories and Criteria Version 3.1 (IUCN Species Survival Commission, 2001).

  87. Akçakaya, H. R., Butchart, S. H. M., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037–2043 (2006).

    Google Scholar 

  88. Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nature Clim. Change. 4, 217–221 (2014).

    Google Scholar 

  89. Summers, D. M., Bryan, B. A., Crossman, N. D. & Meyer, W. S. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob. Change. Biol. 18, 2335–2348 (2012).

    Google Scholar 

  90. Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Phil. Trans. R. Soc. Lond. B 366, 2633–2641 (2011).

    Google Scholar 

  91. Wintle, B. A. et al. Ecological–economic optimization of biodiversity conservation under climate change. Nature Clim. Change. 1, 355–359 (2011).

    Google Scholar 

  92. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA 102, 8245–8250 (2005).

    CAS  Google Scholar 

  93. Levinsky, I., Skov, F., Svenning, J-C. & Rahbek, C. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodivers. Conserv. 16, 3803–3816 (2007).

    Google Scholar 

  94. Poiani, K. A., Goldman, R. L., Hobson, J., Hoekstra, J. M. & Nelson, K. S. Redesigning biodiversity conservation projects for climate change: examples from the field. Biodivers. Conserv. 20, 185–201 (2011).

    Google Scholar 

  95. Game, E. T., Kareiva, P. & Possingham, H. P. Six common mistakes in conservation priority setting. Conserv. Biol. 27, 480–485 (2013).

    Google Scholar 

  96. Bottrill, M. C. et al. Is conservation triage just smart decision making? Trends Ecol. Evol. 23, 649–654 (2008).

    Google Scholar 

  97. Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1–10 (2005).

    Google Scholar 

  98. Watling, J. I. et al. Validating predictions from climate envelope models. PLoS One 8, e63600 (2013).

    CAS  Google Scholar 

  99. Feeley, K. J. & Silman, M. R. Land-use and climate change effects on population size and extinction risk of Andean plants. Glob. Change Biol. 16, 3215–3222 (2010).

    Google Scholar 

  100. Watson, J. E. M. & Segan, D. B. Accommodating the human response for realistic adaptation planning: response to Gillson. et al. Trends Ecol. Evol. 28, 573–574 (2013).

    Google Scholar 

  101. Rodríguez-Sánchez, F. & Arroyo, J. Reconstructing the demise of Tethyan plants: climate-driven range dynamics of Laurus since the Pliocene. Glob. Ecol. Biogeogr. 17, 685–695 (2008).

    Google Scholar 

  102. Lawler, J. J., White, D., Neilson, R. P. & Blaustein, A. R. Predicting climate-induced range shifts: model differences and model reliability. Glob. Change Biol. 12, 1568–1584 (2006).

    Google Scholar 

  103. Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).

    Google Scholar 

  104. Guralnick, R. Differential effects of past climate warming on mountain and flatland species distributions: a multispecies North American mammal assessment. Glob. Ecol. Biogeogr. 16, 14–23 (2007).

    Google Scholar 

  105. Midgley, G. F., Hannah, L., Millar, D., Rutherford, M. C. & Powrie, L. W. Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob. Ecol. Biogeogr. 11, 445–451 (2002).

    Google Scholar 

  106. Waltari, E. et al. Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One 2, e563 (2007).

    Google Scholar 

  107. Johnston, K. M. J., Reund, K. A. F. & Schmitz, O. J. S. Projected range shifting by montane mammals under climate change: implications for Cascadia's National Parks. Ecosphere 3, 1–51 (2012).

    Google Scholar 

  108. Schwartz, M. W., Iverson, L. R., Prasad, A. M., Matthews, S. N. & O'Connor R. J. Predicting extinctions as a result of climate change. Ecology 87, 1611–1615 (2006).

    Google Scholar 

  109. Guisan, A. & Theurillat, J. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr. Assess. 1, 307–320 (2001).

    Google Scholar 

  110. Svenning, J., Normand, S. & Skov, F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography 31, 316–326 (2008).

    Google Scholar 

  111. Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).

    Google Scholar 

  112. Saltz, D., Rubenstein, D. I. & White, G. C. The impact of increased environmental stochasticity due to climate change on the dynamics of asiatic wild ass. Conserv. Biol. 20, 1402–1409 (2006).

    Google Scholar 

  113. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nature Clim. Change 2, 686–690 (2012).

    Google Scholar 

  114. Aiello-Lammens, M. E. et al. The impact of sea-level rise on Snowy Plovers in Florida: integrating geomorphological, habitat, and metapopulation models. Glob. Change Biol. 17, 3644–3654 (2011).

    Google Scholar 

  115. Beerling, D. J. Ecophysiological responses of woody plants to past CO2 concentrations. Tree Physiol. 16, 389–396 (1996).

    CAS  Google Scholar 

  116. Huntley, B. et al. Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change. Ecography 33, 621–626 (2010).

    Google Scholar 

  117. Kearney, M. et al. Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography (Cop.). 31, 423–434 (2008).

    Google Scholar 

  118. Blois, J. L. & Hadly, E. A. Mammalian response to Cenozoic cimatic change. Annu. Rev. Earth Planet. Sci. 37, 181–208 (2009).

    CAS  Google Scholar 

  119. Chin, A., Kyne, P. M., Walker, T. I. & McAuley, R. B. An integrated risk assessment for climate change: analysing the vulnerability of sharks and rays on Australia's Great Barrier Reef. Glob. Change Biol. 16, 1936–1953 (2010).

    Google Scholar 

  120. Davison, J. E. et al. Bringing indices of species vulnerability to climate change into geographic space: an assessment across the Coronado national forest. Biodivers. Conserv. 21, 189–204 (2011).

    Google Scholar 

  121. Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–774 (2010).

    CAS  Google Scholar 

  122. Finch, D. M., Friggens, M. M., Bagne, K. E., Coe, S. J. & Hawksworth, D. L. Vulnerability of Individual Species to Climate Change: Vertebrate Species of the Middle Rio Grande (US Department of Agriculture, 2010).

    Google Scholar 

  123. New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

    Google Scholar 

  124. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  125. Sekercioğlu, C. H., Daily, G. C. & Ehrlich, P. R. Ecosystem consequences of bird declines. Proc. Natl Acad. Sci. USA 101, 18042–18047 (2004).

    Google Scholar 

  126. Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).

    Google Scholar 

  127. Sodhi, N. S. et al. Measuring the meltdown: drivers of global amphibian extinction and decline. PLoS One 3, e1636 (2008).

    Google Scholar 

  128. Martin, T. G. et al. Eliciting expert knowledge in conservation science. Conserv. Biol. 26, 29–38 (2012).

    Google Scholar 

  129. Flockhart, D. T. T., Pichancourt, J-B., Norris, D. R., Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155–165 (2014).

    Google Scholar 

Download references

Acknowledgements

This review was partially supported by the National Science Foundation under Grant No. (1136586).

Author information

Authors and Affiliations

Authors

Contributions

M.P., P.V., C.R., J.E.M.W. and W.B.F. designed the framework for the review. All authors contributed to the writing, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michela Pacifici.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures and tables (PDF 319 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pacifici, M., Foden, W., Visconti, P. et al. Assessing species vulnerability to climate change. Nature Clim Change 5, 215–224 (2015). https://doi.org/10.1038/nclimate2448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2448

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing