Effects of tropical deforestation on climate and agriculture

An Erratum to this article was published on 28 January 2015

This article has been updated

Abstract

Tower, ground-based and satellite observations indicate that tropical deforestation results in warmer, drier conditions at the local scale. Understanding the regional or global impacts of deforestation on climate, and ultimately on agriculture, requires modelling. General circulation models show that completely deforesting the tropics could result in global warming equivalent to that caused by burning of fossil fuels since 1850, with more warming and considerable drying in the tropics. More realistic scenarios of deforestation yield less warming and less drying, suggesting critical thresholds beyond which rainfall is substantially reduced. In regional, mesoscale models that capture topography and vegetation-based discontinuities, small clearings can actually enhance rainfall. At this smaller scale as well, a critical deforestation threshold exists, beyond which rainfall declines. Future agricultural productivity in the tropics is at risk from a deforestation-induced increase in mean temperature and the associated heat extremes and from a decline in mean rainfall or rainfall frequency. Through teleconnections, negative impacts on agriculture could extend well beyond the tropics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Extratropical effects on precipitation due to deforestation in each of the three major tropical regions.
Figure 2: Effect of tropical deforestation on rainfall at a continental scale.
Figure 3: Effect of pattern and total extent of deforestation on rainfall at continental scales.
Figure 4: Critical patch size at continental scales.
Figure 5: Atmospheric dynamics induced by the boundary between forest and non-forest.
Figure 6: Effect of increasing patch size on rainfall at a local scale.

Change history

  • 18 December 2014

    In the print version of this Review, the 'published online' date should read 18 December 2014. The online versions are correct.

References

  1. 1

    D'Almeida, C. et al. The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution. Int. J. Climatol. 27, 633–647 (2007).

    Article  Google Scholar 

  2. 2

    Davidson, E. A. et al. The Amazon basin in transition. Nature. 481, 321–328 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2013).

    Article  Google Scholar 

  4. 4

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Feddema, J. J. et al. The importance of landcover change in simulating future climates. Science 310, 1674–1678 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Findell, K. L., Knutson, T. R. & Milly, P. C. D. Weak simulated extratropical responses to complete tropical deforestation. J. Climate 19, 2835–2850 (2006).

    Article  Google Scholar 

  8. 8

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  9. 9

    Avissar, R. & Werth, D. Global hydroclimatological teleconnections resulting from tropical deforestation. J. Hydrometeorol. 6, 134–145 (2005).

    Article  Google Scholar 

  10. 10

    Lawrence, P. J. & Chase, T. N. Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Climatol. 30, 2066–2087 (2010).

    Article  Google Scholar 

  11. 11

    Sud, Y. et al. Biogeophysical consequences of a tropical deforestation scenario: a GCM simulation study. J. Clim. 9, 3225–3247 (1996).

    Article  Google Scholar 

  12. 12

    McGuffie, K., Henderson-Sellers, A., Zhang, H., Durbidge, T. & Pitman, A. Global climate sensitivity to tropical deforestation. Glob. Planet. Change 10, 97–128 (1995).

    Article  Google Scholar 

  13. 13

    Zhang, H., Henderson-Sellers, A. & McGuffie, K. Impacts of tropical deforestation. Part I: Process analysis of local climatic change. J.Clim. 9, 1497–1517 (1996).

    Article  Google Scholar 

  14. 14

    Zhang, H., Henderson-Sellers, A. & McGuffie, K. The compounding effects of tropical deforestation and greenhouse warming on climate. Climatic Change 49, 309–338 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Voldoire, A. & Royer, J. F. Tropical deforestation and climate variability. Clim. Dynam. 22, 857–874 (2004).

    Article  Google Scholar 

  16. 16

    Voldoire, A. & Royer, J. F. Climate sensitivity to tropical land surface changes with coupled versus prescribed SSTs. Clim. Dynam. 24, 843–862 (2005).

    Article  Google Scholar 

  17. 17

    Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact. 14, 1–34 (2010).

    Article  Google Scholar 

  18. 18

    Williams, E. R. & Satori, G. Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys. J. Atmos. Sol. Terr.Phys. 66: 1213–1231 (2004).

    Article  Google Scholar 

  19. 19

    Lean, J. & Warrilow, D. Simulation of the regional climatic impact of Amazon deforestation. Nature 342, 411–413 (1989).

    Article  Google Scholar 

  20. 20

    Mylne, M. F. & Rowntree, P. R. Modeling the effects of albedo change associated with tropical deforestation. Climatic Change 21, 317–343 (1991).

    Article  Google Scholar 

  21. 21

    Nobre, C. A., Sellers, P. J. & Shukla, J. Amazonian deforestation and regional climate change. J. Clim. 4, 957–988 (1991).

    Article  Google Scholar 

  22. 22

    Dickinson, R. E. & Kennedy, P. Impacts on regional climate of Amazon deforestation. Geophys. Res. Lett. 19, 1947–1950 (1992).

    Article  Google Scholar 

  23. 23

    Lean, J. & Rowntree, P. A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Q. J. R. Meteorol. Soc. 119, 509–530 (1993).

    Article  Google Scholar 

  24. 24

    Pitman, A., Durbidge, T., Henderson-Sellers, A. & McGuffie, K. Assessing climate model sensitivity to prescribed deforested landscapes. Int. J. Climatol. 13, 879–898 (1993).

    Article  Google Scholar 

  25. 25

    Dirmeyer, P. A. & Shukla, J. Albedo as a modulator of climate response to tropical deforestation. J. Geophys Res. Atmos. 99, 20863–20877 (1994).

    Article  Google Scholar 

  26. 26

    Polcher, J. & Laval, K. A statistical study of the regional impact of deforestation on climate in the LMD GCM. Clim. Dynam. 10, 205–219 (1994).

    Article  Google Scholar 

  27. 27

    Polcher, J. & Laval, K. The impact of African and Amazonian deforestation on tropical climate. J. Hydrol. 155, 389–405 (1994).

    Article  Google Scholar 

  28. 28

    Lean, J., Bunton, C. B., Nobre, C. A. & Rowntree, P. R. in Amazonian deforestation and climate (Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L.) 549–576 (Wiley, 1996).

    Google Scholar 

  29. 29

    Manzi, A. O. & Planton, S. in Amazonian deforestation and climate (Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L.) 505–529 (Wiley, 1996).

    Google Scholar 

  30. 30

    Lean, J. & Rowntree, P. Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J. Clim. 10, 1216–1235 (1997).

    Article  Google Scholar 

  31. 31

    Hahmann, A. N. & Dickinson, R. E. RCCM2-BATS model over tropical South America: Applications to tropical deforestation. J. Clim. 10, 1944–1964 (1997).

    Article  Google Scholar 

  32. 32

    Costa, M. H. & Foley, J. A. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J. Clim. 13, 18–34 (2000).

    Article  Google Scholar 

  33. 33

    Gedney, N. & Valdes, P. J. The effect of Amazonian deforestation on the northern hemisphere circulation and climate. Geophys. Res. Lett. 27, 3053–3056 (2000).

    Article  Google Scholar 

  34. 34

    Kleidon, A. & Heimann, M. Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation. Clim. Dynam. 16, 183–199 (2000).

    Article  Google Scholar 

  35. 35

    Nobre, P., Malagutti, M., Urbano, D. F., de Almeida, R. A. F. & Giarolla, E. Amazon deforestation and climate change in a coupled model simulation. J. Clim. 22, 5686–5697 (2009).

    Article  Google Scholar 

  36. 36

    Semazzi, F. H. M. & Song, Y. A GCM study of climate change induced by deforestation in Africa. Clim. Res. 17, 169–182 (2001).

    Article  Google Scholar 

  37. 37

    Maynard, K. & Royer, J. F. Sensitivity of a general circulation model to land surface parameters in African tropical deforestation experiments. Clim. Dynam. 22, 555–572 (2004).

    Article  Google Scholar 

  38. 38

    Werth, D. & Avissar, R. The local and global effects of African deforestation. Geophys. Res. Lett. 32, L12704 (2005).

    Google Scholar 

  39. 39

    Schneck, R. & Mosbrugger, V. Simulated climate effects of Southeast Asian deforestation: Regional processes and teleconnection mechanisms. J. Geophys. Res. Atmos. 116, D11116 (2011).

    Article  Google Scholar 

  40. 40

    Werth, D. & Avissar, R. The local and global effects of Amazon deforestation. J. Geophys. Res. Atmos. 107, 8087 (2002).

    Article  Google Scholar 

  41. 41

    Cui, X., Graf, H. F., Langmann, B., Chen, W. & Huang, R. Climate impacts of anthropogenic land use changes on the Tibetan Plateau. Glob. Planet. Change 54, 33–56 (2006).

    Article  Google Scholar 

  42. 42

    Hasler, N., Werth, D. & Avissar, R. Effects of tropical deforestation on global hydroclimate: A multimodel ensemble analysis. J. Clim. 22, 1124–1141 (2009).

    Article  Google Scholar 

  43. 43

    Takata, K., Saito, K. & Yasunari, T. Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proc. Natl Acad. Sci. USA 106, 9586–9589 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Snyder, P. K. The influence of tropical deforestation on the Northern Hemisphere climate by atmospheric teleconnections. Earth Interact. 14, 1–34 (2010).

    Article  Google Scholar 

  45. 45

    Chase, T. N. et al. The sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res. 101, 7393–7408 (1996).

    Article  Google Scholar 

  46. 46

    Chase, T. N., Pielke, R. A. Sr, Kittel, T. G. F., Nemani, R. R. & Running, S. W. Simulated impacts of historical land cover changes on global climate in northern winter. Clim. Dynam. 16, 93–105 (2000).

    Article  Google Scholar 

  47. 47

    Medvigy, D., Walko, R. L., Otte, M. J. & Avissar, R. Simulated changes in northwest U. S. climate in response to Amazon deforestation. J. Clim. 26, 9115–9136 (2013).

    Article  Google Scholar 

  48. 48

    Mabuchi, K., Sato, Y. & Kida, H. Climatic impact of vegetation change in the Asian tropical region. Part I: Case of the northern hemisphere summer. J. Clim. 18, 410–428 (2005).

    Article  Google Scholar 

  49. 49

    Werth, D. & Avissar, R. The local and global effects of Southeast Asian deforestation. Geophys. Res. Lett. 32, L20702 (2005).

    Google Scholar 

  50. 50

    Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    Article  Google Scholar 

  51. 51

    Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D. & Li, B. L. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos. Chem. Phys. 13, 1039–1056 (2013).

    CAS  Article  Google Scholar 

  52. 52

    Gibbard, S., Caldeira, K., Bala, G., Phillips, T. J. & Wickett, M. Climate effects of global land cover change. Geophys. Res. Lett. 32, L23705 (2005).

    Article  Google Scholar 

  53. 53

    Medvigy, D., Walko, R. L. & Avissar, R. Effects of deforestation on spatiotemporal distributions of precipitation in South America. J. Clim. 24, 2147–2163 (2011).

    Article  Google Scholar 

  54. 54

    Castillo, C. K. G. & Gurney, K. R. A sensitivity analysis of surface biophysical, carbon, and climate impacts of tropical deforestation rates in CCSM4-CNDV. J. Clim. 26, 805–821 (2013).

    Article  Google Scholar 

  55. 55

    Oyama, M. D. & Nobre, C. A. A new climate-vegetation equilibrium state for tropical South America. Geophys. Res. Lett. 30, 2199 (2003).

    Article  Google Scholar 

  56. 56

    Sampaio, G. et al. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. J. Geophys. Res. 34, L17709 (2007).

    Google Scholar 

  57. 57

    Ramos da Silva, R., Werth, D. & Avissar, R. Regional impacts of future land-cover changes on the amazon basin wet-season climate. J. Clim. 21, 1153–1170 (2008).

    Article  Google Scholar 

  58. 58

    Betts, R. A. et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol. 78, 157–175 (2004).

    Article  Google Scholar 

  59. 59

    Senna, M. C. A., Costa, M. H. & Pires, G. F. Vegetation-atmosphere-soil nutrient feedbacks in the Amazon for different deforestation scenarios. J. Geophys. Res. 114, D04104 (2009).

    Article  CAS  Google Scholar 

  60. 60

    Makarieva, A. M., Gorshkov, V. G. & Li, B. L. Precipitation on land versus distance from the ocean: Evidence for a forest pump of atmospheric moisture. Ecol. Complexity 6, 302–307 (2009).

    Article  Google Scholar 

  61. 61

    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–286 (2012).

    CAS  Article  Google Scholar 

  62. 62

    Medvigy, D., Walko, R. L. & Avissar, R. Modeling interannual variability of the Amazon hydroclimate. Geophys. Res. Lett. 35, L15817 (2008).

    Article  Google Scholar 

  63. 63

    Kain, J. S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 43, 170–181 (2004).

    Article  Google Scholar 

  64. 64

    Avissar, R., Silva Dias, P. L., Silva Dias, M. A. & Nobre, C. The Large-scale biosphere-atmosphere experiment in Amazonia (LBA): Insights and future research needs. J. Geophys Res. Atmos. 107, LBA 54-1-LBA 54-6 (2002).

    Google Scholar 

  65. 65

    Ramos da Silva, R. & Avissar, R. The hydrometeorology of a deforested region of the Amazon Basin. J. Hydrometeorol. 7, 1028–1042 (2006).

    Article  Google Scholar 

  66. 66

    Avissar, R. & Liu, Y. Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J. Geophys. Res. Atmos. 101, 7499–7518 (1996).

    Article  Google Scholar 

  67. 67

    Gash, J. & Nobre, C. Climatic effects of Amazonian deforestation: Some results from ABRACOS. Bull. Am. Meteorol. Soc. 78, 823–830 (1997).

    Article  Google Scholar 

  68. 68

    Correia, F. W. S, Alvala, R. C. S. & Manzi, A. O. Modeling the impacts of land cover change in Amazonia: a regional climate model (RCM) simulation study. Theor. Appl. Climatol. 93, 225–244 (2008).

    Article  Google Scholar 

  69. 69

    Silva Dias, M. A. F. & Regnier, P. in Amazonian Deforestation and Climate (eds Gash, J. H. C., Nobre, C. A., Roberts, J. M. & Victoria, R. L.) 531–547 (Wiley, 1996).

    Google Scholar 

  70. 70

    Baidya Roy, S. & Avissar, R. Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys. Res. Lett. 27, 533–536 (2000).

    Article  Google Scholar 

  71. 71

    Souza, E. P., Renno, N. O. & Silva Dias, M. A. F. Convective circulations induced by surface heterogeneities. J. Atmos. Sci. 57, 2915–2922 (2000).

    Article  Google Scholar 

  72. 72

    Wang, J., Bras, R. L. & Eltahir, E. A. The impact of observed deforestation on the mesoscale distribution of rainfall and clouds in Amazonia. J.Hydrometeorol. 1, 267–286 (2000).

    Article  Google Scholar 

  73. 73

    Weaver, C. P. & Avissar, R. Atmospheric disturbances caused by human modification of the landscape. Bull. Am. Meteorol. Soc. 82, 269–281 (2001).

    Article  Google Scholar 

  74. 74

    Baidya Roy, S. & Avissar, R. Impact of land use/land cover change on regional hydrometeorology in Amazonia. J. Geophys. Res. Atmos. 107, LBA 4-1-LBA 4-12 (2002).

    Article  Google Scholar 

  75. 75

    Saad, S. I., da Rocha, H. R., Silva Dias, M. A. F. & Rosolem, R. Can the deforestation breeze change the rainfall in Amazonia? A case study for the BR-163 highway region. Earth Interact. 14, 18 (2010).

    Article  Google Scholar 

  76. 76

    Negri, A., Adler, R., Xu, L. & Surratt, J. The impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).

    Article  Google Scholar 

  77. 77

    Walker, R. et al. Protecting the Amazon with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).

    CAS  Article  Google Scholar 

  78. 78

    Henderson-Sellers, A. et al. Tropical deforestation: Modeling local-to regional-scale climate change. J. Geophys Res. Atmos. 98, 7289–7315 (1993).

    Article  Google Scholar 

  79. 79

    Zheng, X. & Eltahir, E. A. B. The role of vegetation in the dynamics of West African monsoons. J. Clim. 11, 2078–2096 (1998).

    Article  Google Scholar 

  80. 80

    Abiodun, B., Pal, J. S., Afiesimama, E., Gutowski, W. & Adedoyin, A. Simulation of West African monsoon using RegCM3 Part II: impacts of deforestation and desertification. Theor. Appl. Climatol. 93, 245–261 (2008).

    Article  Google Scholar 

  81. 81

    Nogherotto, R., Coppola, E., Giorgi, F. & Mariotti, L. Impact of Congo basin deforestation on the African monsoon. Atmos. Sci. Lett. 14, 45–51 (2013).

    Article  Google Scholar 

  82. 82

    Baidya Roy, S., Walsh, P. D. & Lichstein, J. W. Can logging in equatorial Africa affect adjacent parks. Ecol. Soc. 10, 6 (2005).

    Article  Google Scholar 

  83. 83

    Sen, O. L., Wang, Y. & Wang, B. Impact of Indochina deforestation on the East Asian summer monsoon. J. Clim. 17, 1366–1380 (2004).

    Article  Google Scholar 

  84. 84

    Sen, O. L. et al. Hydro-climatic effects of future land-cover/land-use change in montane mainland southeast Asia. Climatic Change 118, 213–226 (2013).

    Article  Google Scholar 

  85. 85

    Calvet, J. C. et al. 1997. Mapping surface parameters for mesoscale modeling in forested and deforested south-western Amazonia. Bull. Am. Meteorol. Soc. 78, 413–423 (1997).

    Article  Google Scholar 

  86. 86

    Da Rocha, H.R. et al. Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol. Appl. 14, S22–S32 (2004).

    Article  Google Scholar 

  87. 87

    Von Randow, C. et al. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theor. Appl. Climatol. 78, 5–26 (2004).

    Article  Google Scholar 

  88. 88

    Dubreuil, V., Debortoli, N., Funatsu, B., Nédélec, V. & Durieux, L. Impact of land-cover change in the Southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ. Monit. Assess. 184, 877–891 (2012).

    Article  Google Scholar 

  89. 89

    Huete, A. R. et al. 2006. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).

    Article  Google Scholar 

  90. 90

    Saleska, S. R., Didan, K., Huete, A. R. & da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612. (2007).

    CAS  Article  Google Scholar 

  91. 91

    Chu, P. S., Yu, Z. P. & Hastenrath, S. Detecting climate change concurrent with deforestation in the Amazon basin: Which way has it gone? Bull. Am. Meteorol. Soc. 75, 579–583 (1994).

    Article  Google Scholar 

  92. 92

    Cutrim, E., Martin, D. W. & Rabin, R. Enhancement of cumulus clouds over deforested lands in Amazonia. Bull. Am. Meteorol. Soc. 76, 1801–1805 (1995).

    Article  Google Scholar 

  93. 93

    Chagnon, F., Bras, R. & Wang, J. Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett. 31, L24212 (2004).

    Article  Google Scholar 

  94. 94

    Wang, J. et al. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl Acad. Sci. USA 106, 3670–3674 (2009).

    CAS  Article  Google Scholar 

  95. 95

    Lawton, R. O., Nair, U. S., Pielke, R. A. & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001).

    CAS  Google Scholar 

  96. 96

    Nair, U. S., Lawton, R. O., Welch, R. M. & Pielke R. A. Sr Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of cumulus cloud field characteristics to lowland deforestation. J. Geophys. Res. 108, 4206. (2003).

    Article  Google Scholar 

  97. 97

    Webb, T. J., Woodward, F. I., Hannah, L. & Gaston, K. J. Forest cover–rainfall relationships in a biodiversity hotspot: the Atlantic forest of Brazil. Ecol. Appl. 15, 1968–1983 (2005).

    Article  Google Scholar 

  98. 98

    Butt, N., de Oliveira, P. A. & Costa, M. H. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res. Atmos. 116, D11120 (2011).

    Article  Google Scholar 

  99. 99

    Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2009).

    Article  Google Scholar 

  100. 100

    Chagnon, F. J. & Bras, R. L. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32: L13703 (2005).

    Article  Google Scholar 

  101. 101

    Chen, T., Yoon, J., St Croix, K. & Takle, E. Suppressing impacts of the Amazonian deforestation by the global circulation change. Bull. Am. Meteorol. Soc. 82, 2209–2216 (2001).

    Article  Google Scholar 

  102. 102

    Marengo, J. A. Interdecadal variability and trends of rainfall across the Amazon basin. Theor. Appl. Climatol. 78, 79–96 (2004).

    Article  Google Scholar 

  103. 103

    Gloor, M. et al. Intensification of the Amazon hydrological cycle over the last two decades. Geophys. Res. Lett. 40, 1–5 (2013).

    Article  Google Scholar 

  104. 104

    Li, W., Fu, R., Negron-Juarez, R. I. & Fernandes, K. Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Phil. Trans. R. Soc. B 363, 1767–1772 (2008).

    Article  Google Scholar 

  105. 105

    Marengo, J. A., Nobre, C. A., Sampaio, G., Salazar, L. F. & Borma, L. S. in Tropical Rainforest Responses to Climatic Change (eds Bush, M., Flenley, J. & Gosling, W.) 259–283 (Springer, 2011).

    Google Scholar 

  106. 106

    Espinoza Villar, J. C. et al. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 29, 1574–1594 (2009).

    Article  Google Scholar 

  107. 107

    Kanae, S., Oki, T. & Musiake, K. Impact of deforestation on regional precipitation over the Indochina Peninsula. J. Hydrometeorol. 2, 51–70 (2001).

    Article  Google Scholar 

  108. 108

    Kumagai, T., Kanamori, H. & Yasunari, T. Deforestation-induced reduction in rainfall. Hydrol. Process. 27, 3811–3814 (2013).

    Article  Google Scholar 

  109. 109

    Yin, X. & Gruber, A. Validation of the abrupt change in GPCP precipitation in the Congo River Basin. Int. J. Climatol. 30, 110–119 (2010).

    Google Scholar 

  110. 110

    Hulme, M., Doherty, R., Ngara, T., New, M. & Lister, D. African climate change: 1900–2100. Clim. Res. 17, 145–168 (2001).

    Article  Google Scholar 

  111. 111

    Costa, M. H., Yanagi, S. N. M., Souza, P. J. O. P., Ribeiro, A. & Rocha, E. J. P. Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pastureland expansion. Geophys. Res. Lett. 34, L07706 (2007).

    Google Scholar 

  112. 112

    Gordon, L. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA. 102, 7612–7617 (2005).

    CAS  Article  Google Scholar 

  113. 113

    Oliveira, L. J. C., Costa, M. H., Soares-Filho, B. S. & Coe, M. T. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 8, 024021 (2013).

    Article  Google Scholar 

  114. 114

    Marengo, J. A., Nobre, C. A. & Culf, A. D. Climatic impacts of “friagens” in forested and deforested areas of the Amazon basin. J. Appl. Meteor. 36, 1553–1566 (1997).

    Article  Google Scholar 

  115. 115

    Garreaud, R. Cold air incursions over Subtropical South America: Mean structure and dynamics. Mon. Weather Rev. 128, 2544–2559 (2000).

    Article  Google Scholar 

  116. 116

    Durieux, L., Machado, L. & Laurent, H. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sens. Environ. 86, 132–140 (2003).

    Article  Google Scholar 

  117. 117

    Fisch, G. et al. The convective boundary layer over pasture and forest in Amazonia. Theor. Appl. Climatol. 78, 47–59 (2004).

    Article  Google Scholar 

  118. 118

    Machado, L. A. T., Laurent, H., Dessay, N. & Miranda, I. Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing. Theor. Appl. Climatol. 78, 61–77 (2004).

    Article  Google Scholar 

  119. 119

    Bradshaw, C. J. A., Sodhi, N. S., Peh, K. S. H. & Brook, B. W. Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob. Change Biol. 13, 2379–2395 (2007).

    Article  Google Scholar 

  120. 120

    Anthes, R. A. 1984. Enhancement of convective precipitation by mesoscale variations in vegetative covering in semiarid regions. J. Appl. Meteorol. 23, 541–554 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Somnath Baidya Roy, Penny Davies, Stephan DeWekker, Donna Lee, Anastassia Makarieva, Antonio Nobre, Jan Pokorny, David Werth and Daniel Zarin. Lia Cattaneo, Christopher Fender, Megan McGroddy, Amber Slatosky, University of Virginia and the Climate and Land Use Alliance provided critical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deborah Lawrence.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 143 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lawrence, D., Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nature Clim Change 5, 27–36 (2015). https://doi.org/10.1038/nclimate2430

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing