Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Uncertainty in projecting GHG emissions from bioenergy

The definition of baselines is a major step in determining the greenhouse-gas emissions of bioenergy systems. Accounting frameworks with a planning objective might require different baseline attributes and designs than those with a monitoring objective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suitability of baselines in US timber trend projections.


  1. Ascui, F. & Lovell, H. Account. Audit. Accountab. J. 24, 78–999 (2011).

    Google Scholar 

  2. Deloitte, L. L. C. Carbon Accounting Challenges: Are You Ready? (Deloitte Center for Energy Solutions, 2009).

    Google Scholar 

  3. Hudiburg, T. W., Law, B. E., Wirth, C. & Luyssaert, S. Nature Clim. Change 1, 419–423 (2011).

    Article  CAS  Google Scholar 

  4. Walker, T., Cardellichio, P., Gunn, J. S., Saah, D. S. & Hagan J. M. J. Sustain. For. 32, 130–158 (2013).

    Article  Google Scholar 

  5. Accounting Framework for Biogenic CO2 Emissions from Stationary Sources (US Environmental Protection Agency, 2011).

  6. Gillenwater, M. What is Additionality? Part 2: A Framework for More Precise Definitions and Standardized Approaches (GHG Management Institute, 2012).

    Google Scholar 

  7. Spiceland, J. D., Seppe, J. & Tomassini, L. A. Intermediate Accounting 4th edn (McGraw-Hill/Irwin, 2005).

    Google Scholar 

  8. Kyoto Protocol to the United Nations Framework Convention on Climate Change UN Doc. FCCC/CP/1997/7/Add.1, Dec. 10, 1997; 37 ILM 22 (UNFCCC, 1998).

  9. Marland, G., Buchholz, T. & Kowalczyk, T. J. Ind. Ecol. 17, 340–342 (2013).

    Article  Google Scholar 

  10. Cherubini, F., Strømman, A. H. & Hertwich, E. Ecol. Model. 223, 59–66 (2011).

    Article  CAS  Google Scholar 

  11. McKechnie, J., Colombo, S., Chen, J., Mabee, W. & MacLean, H. L. Environ. Sci. Technol. 45, 789–795 (2011).

    Article  CAS  Google Scholar 

  12. Zanchi, G., Pena, N. & Bird, N. GCB Bioenergy 4, 761–772 (2012).

    Article  CAS  Google Scholar 

  13. Colnes, A. et al. Biomass Supply and Carbon Accounting for Southeastern Forests (Biomass Energy Resource Center, 2012).

    Google Scholar 

  14. Galik C. S. & Abt R. C. The Effect of Assessment Scale and Metric Selection on the Greenhouse Gas Benefits of Woody Biomass (Nicolas Institute for Environmental Policy Solutions, 2012).

    Book  Google Scholar 

  15. Marland, G. J. Ind. Ecol. 14, 866–869 (2010).

    Article  CAS  Google Scholar 

  16. Gillenwater, M. What is Additionality? Part 1: A Long Standing Problem (GHG Management Institute, 2012).

    Google Scholar 

  17. Begg, K. & van der Horst, D. Mitig. Adapt. Strat. Glob. Change 9, 181–200 (2004).

    Article  Google Scholar 

  18. Gustavsson, L. et al. Energy Policy 28, 935–946 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thomas Buchholz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchholz, T., Prisley, S., Marland, G. et al. Uncertainty in projecting GHG emissions from bioenergy. Nature Clim Change 4, 1045–1047 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing