Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantifying underestimates of long-term upper-ocean warming

Abstract

The global ocean stores more than 90% of the heat associated with observed greenhouse-gas-attributed global warming1,2,3,4. Using satellite altimetry observations and a large suite of climate models, we conclude that observed estimates of 0–700 dbar global ocean warming since 1970 are likely biased low. This underestimation is attributed to poor sampling of the Southern Hemisphere, and limitations of the analysis methods that conservatively estimate temperature changes in data-sparse regions5,6,7. We find that the partitioning of northern and southern hemispheric simulated sea surface height changes are consistent with precise altimeter observations, whereas the hemispheric partitioning of simulated upper-ocean warming is inconsistent with observed in-situ-based ocean heat content estimates. Relying on the close correspondence between hemispheric-scale ocean heat content and steric changes, we adjust the poorly constrained Southern Hemisphere observed warming estimates so that hemispheric ratios are consistent with the broad range of modelled results. These adjustments yield large increases (2.2–7.1 × 1022 J 35 yr−1) to current global upper-ocean heat content change estimates, and have important implications for sea level, the planetary energy budget and climate sensitivity assessments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upper-ocean (0–700 dbar) heat content trends for 1970–2004.
Figure 2: Global and hemispheric OHC compared to total steric anomalies simulated by models for 1970–2004.
Figure 3: Southern Hemisphere fractional contributions to global upper-OHC or global average SSH anomaly for varying trend lengths (1–35 years).
Figure 4: Histogram of the observed and simulated Southern Hemisphere contribution to global OHC trends for 1970–2004.
Figure 5: Observed and simulated hemispheric and global upper-ocean (0–700 dbar) heat content change for 1970–2004.

Similar content being viewed by others

References

  1. Levitus, S., Antonov, J. & Boyer, T. Warming of the world ocean, 1955–2003. Geophys. Res. Lett. 32, L02604 (2005).

    Google Scholar 

  2. Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011).

    Article  Google Scholar 

  3. Otto, A. et al. Energy budget constraints on climate response. Nature Geosci. 6, 415–416 (2013).

    Article  CAS  Google Scholar 

  4. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 3, 255–315 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  5. Gregory, J. M., Banks, H. T., Stott, P. A., Lowe, J. A. & Palmer, M. D. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett. 31, L15312 (2004).

    Article  Google Scholar 

  6. Gouretski, V. & Koltermann, K. P. How much is the ocean really warming? Geophys. Res. Lett. 34, L01610 (2007).

    Article  Google Scholar 

  7. Gille, S. T. Decadal-scale temperature trends in the southern hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    Article  Google Scholar 

  8. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008).

    Article  CAS  Google Scholar 

  9. Lyman, J. M. & Johnson, G. C. Estimating annual global upper-ocean heat content anomalies despite irregular in situ ocean sampling*. J. Clim. 21, 5629–5641 (2008).

    Article  Google Scholar 

  10. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  11. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  12. Lyman, J. M. & Johnson, G. C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice*. J. Clim. 27, 1945–1957 (2014).

    Article  Google Scholar 

  13. Wijffels, S. E. et al. Changing expendable bathythermograph fall rates and their impact on estimates of thermosteric sea level rise. J. Clim. 21, 5657–5672 (2008).

    Article  Google Scholar 

  14. Cowley, R., Wijffels, S., Cheng, L., Boyer, T. & Kizu, S. Biases in expendable bathythermograph data: A new view based on historical side-by-side comparisons. J. Atmos. Ocean. Technol. 30, 1195–1225 (2013).

    Article  Google Scholar 

  15. Gille, S. T. Warming of the southern ocean since the 1950s. Science 295, 1275–1277 (2002).

    Article  CAS  Google Scholar 

  16. Aoki, S., Bindoff, N. L. & Church, J. A. Interdecadal water mass changes in the southern ocean between 30° E and 160° E. Geophys. Res. Lett. 32, L07607 (2005).

    Google Scholar 

  17. Alory, G., Wijffels, S. & Meyers, G. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett. 34, L02606 (2007).

    Article  Google Scholar 

  18. Durack, P. J. & Wijffels, S. E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23, 4342–4362 (2010).

    Article  Google Scholar 

  19. Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).

    Article  CAS  Google Scholar 

  20. AchutaRao, K. M. et al. Variability of ocean heat uptake: Reconciling observations and models. J. Geophys. Res. 111, C05019 (2006).

    Article  Google Scholar 

  21. Gleckler, P. J. et al. Human-induced global ocean warming on multidecadal timescales. Nature Clim. Change 2, 524–529 (2012).

    Article  Google Scholar 

  22. Pierce, D. W., Gleckler, P. J., Barnett, T. P., Santer, B. D. & Durack, P. J. The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett. 39, L21704 (2012).

    Article  Google Scholar 

  23. Smith, D. M. & Murphy, J. M. An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res. 112, C02022 (2007).

    Article  Google Scholar 

  24. Banks, H. T. & Gregory, J. M. Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake. Geophys. Res. Lett. 33, L07608 (2006).

    Article  Google Scholar 

  25. Fyfe, J. C. Southern ocean warming due to human influence. Geophys. Res. Lett. 33, L19701 (2006).

    Article  Google Scholar 

  26. Talley, L. D. Shallow, intermediate, and deep overturning components of the global heat budget. J. Phys. Oceanogr. 33, 530–560 (2003).

    Article  Google Scholar 

  27. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13, 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  28. Church, J. A., White, N. J., Coleman, R., Lambeck, K. & Mitrovica, J. X. Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Clim. 17, 2609–2625 (2004).

    Article  Google Scholar 

  29. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo program. Prog. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  30. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 9, 741–866 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

Download references

Acknowledgements

The work of P.J.D., P.J.G. and K.E.T. from Lawrence Livermore National Laboratory is a contribution to the US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under contract DE-AC52-07NA27344. The work of F.W.L. was performed at the Jet Propulsion Laboratory, California Institute of Technology and is supported by NASA ROSES Physical Oceanography grant NNN13D462T and the NASA Sea Level Change Team (NSLCT). We thank numerous colleagues from the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for valuable feedback and input into this project. We also thank J. Durack of the University of California, San Francisco (USA), M. V. Durack of educAID (Australia), T. P. Boyer from the National Oceanographic Data Center, Silver Spring (USA), C. M. Domingues from the Antarctic Climate and Ecosystems CRC, Hobart (Australia) and J. A. Church from the Centre for Australian Weather and Climate Research, Hobart (Australia). We acknowledge the sources of observed data used in this study: D. Smith and J. Murphy (Smi07), C. M. Domingues (Dom08), M. Ishii and M. Kimoto (Ish09), S. Levitus and T. Boyer (Lev12) and the International Argo Program and the national programs that contribute to it. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Tables 1 and 2) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The DW10 data presented in this study can be downloaded from the CSIRO Ocean Change website at www.cmar.csiro.au/oceanchange. LLNL Release #: LLNL-JRNL-651841.

Author information

Authors and Affiliations

Authors

Contributions

P.J.D. completed the OHC analysis, P.J.G. assisted in the OHC analysis and F.W.L. completed the SSH analysis. All authors assisted with interpretation and shared responsibility for writing the manuscript.

Corresponding author

Correspondence to Paul J. Durack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durack, P., Gleckler, P., Landerer, F. et al. Quantifying underestimates of long-term upper-ocean warming. Nature Clim Change 4, 999–1005 (2014). https://doi.org/10.1038/nclimate2389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing