Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Benthic coral reef calcium carbonate dissolution in an acidifying ocean

Subjects

Abstract

Changes in CaCO3 dissolution due to ocean acidification are potentially more important than changes in calcification to the future accretion and survival of coral reef ecosystems. As most CaCO3 in coral reefs is stored in old permeable sediments, increasing sediment dissolution due to ocean acidification will result in reef loss even if calcification remains unchanged. Previous studies indicate that CaCO3 dissolution could be more sensitive to ocean acidification than calcification by reef organisms. Observed changes in net ecosystem calcification owing to ocean acidification could therefore be due mainly to increased dissolution rather than decreased calcification. In addition, biologically mediated calcification could potentially adapt, at least partially, to future ocean acidification, while dissolution, which is mostly a geochemical response to changes in seawater chemistry, will not adapt. Here, we review the current knowledge of shallow-water CaCO3 dissolution and demonstrate that dissolution in the context of ocean acidification has been largely overlooked compared with calcification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual model of factors controlling CaCO3 sediment dissolution.
Figure 2: Conceptual model illustrating the processes affecting whole coral reef accretion with global production and accumulation rates, adapted from ref. 31.
Figure 3: Timeline of studies addressing various aspects of carbonate dissolution from the 1960s until present.
Figure 4: Number of publications per year from a Scopus search of 'ocean acidification' and 'coral' in the title, abstract and keywords between 2005 and 2013.

Similar content being viewed by others

References

  1. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshwat. Res. 50, 839–866 (1999).

    Google Scholar 

  2. Harrison, P. & Booth, D. in Marine Ecology Vol. 1 (eds Connell, S. D. & Gillanders, B. M.) Ch. 13, 316–377 (Oxford Univ. Press, 2007).

    Google Scholar 

  3. Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    CAS  Google Scholar 

  4. Gattuso, J-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).

    CAS  Google Scholar 

  5. Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. Oceans 110, 1–16 (2005).

    Google Scholar 

  6. Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Natl Acad. Sci. USA 110, 15342–15347 (2013).

    CAS  Google Scholar 

  7. Harney, J. N. III & Fletcher, C. H. A budget of carbonate framework and sediment production, Kailua Bay, Oahu, Hawaii. J. Sediment. Res. 73, 856–868 (2003).

    Google Scholar 

  8. Mallela, J. & Perry, C. T. Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica. Coral Reefs 26, 129–145 (2007).

    Google Scholar 

  9. Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).

    CAS  Google Scholar 

  10. Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    CAS  Google Scholar 

  11. Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207 (2014).

    CAS  Google Scholar 

  12. Hoegh-Guldberg, O. Coral reef sustainability through adaptation: Glimmer of hope or persistent mirage? Curr. Opin. Environ. Sust. 7, 127–133 (2014).

    Google Scholar 

  13. Walter, L. M. & Morse, J. W. Reactive surface area of skeletal carbonates during dissolution: effect of grain size. J. Sediment. Res. 54, 1081–1090 (1984).

    CAS  Google Scholar 

  14. Walter, L. M. & Morse, J. W. The dissolution kinetics of shallow marine carbonates in seawater: a laboratory study. Geochim. Cosmochim. Acta 49, 1503–1513 (1985). A comprehensive study of dissolution kinetics of biogenic carbonate substrates in sea water showing that microarchitecture can sometimes override thermodynamic mineral stability as a control of dissolution rates.

    CAS  Google Scholar 

  15. Sanders, D. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geological recognition, processes, potential significance. J. Afr. Earth Sci. 36, 99–134 (2003).

    CAS  Google Scholar 

  16. Gattuso, J., Frankignoulle, M. & Wollast, R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29, 405–434 (1998).

    Google Scholar 

  17. Smith, B. T., Frankel, E. & Jell, J. S. in Reefs and Carbonate Platforms in the Pacific and Indian Oceans 279–294 (Blackwell Publishing, 2009).

    Google Scholar 

  18. Hubbard, D. K., Burke, R. B. & Gill, I. P. Where's the reef: the role of framework in the Holocene. Carbonate. Evaporite. 13, 3–9 (1998).

    Google Scholar 

  19. Davies, P. & Kinsey, D. Holocene reef growth — One Tree Island, Great Barrier Reef. Mar. Geol. 24, M1–M11 (1977).

    Google Scholar 

  20. Kinsey, D. & Davies, P. Carbon Turnover, Calcification and Growth in Coral Reefs (Elsevier, 1979).

    Google Scholar 

  21. Marshall, J. F. & Davies, P. J. Internal structure and Holocene evolution of One Tree Reef, southern Great Barrier Reef. Coral Reefs 1, 21–28 (1982).

    Google Scholar 

  22. Montaggioni, L. F. History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth Sci. Rev. 71, 1–75 (2005).

    Google Scholar 

  23. Harney, J. N., Grossman, E. E., Richmond, B. M. & Fletcher, C. H. III Age and composition of carbonate shoreface sediments, Kailua Bay, Oahu, Hawaii. Coral Reefs 19, 141–154 (2000).

    Google Scholar 

  24. Yamano, H., Miyajima, T. & Koike, I. Importance of foraminifera for the formation and maintenance of a coral sand cay: Green Island, Australia. Coral Reefs 19, 51–58 (2000).

    Google Scholar 

  25. Ryan, D. A., Opdyke, B. N. & Jell, J. S. Holocene sediments of Wistari Reef: Towards a global quantification of coral reef related neritic sedimentation in the Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 175, 173–184 (2001).

    Google Scholar 

  26. Gourlay, M. in Proc. 6th Int. Coral Reef Symp. (eds Choat, J. H. et al.) 491–496 (1998).

    Google Scholar 

  27. Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 1–7 (2013).

    Google Scholar 

  28. Hubbard, D. K., Miller, A. I. & Scaturo, D. Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, US Virgin Islands); Applications to the nature of reef systems in the fossil record. J. Sediment. Res. 60, 335–360 (1990).

    Google Scholar 

  29. Andersson, A. J. & Gledhill, D. Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu. Rev. Mar. Sci. 5, 321–348 (2013).

    Google Scholar 

  30. Cyronak, T., Santos, I. R. & Eyre, B. D. Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys. Res. Lett. 40, 4876–4881 (2013). First study to measure CaCO 3 sediment dissolution in situ over a diel cycle with advective flow and increased p CO 2 (ocean acidification scenarios).

    CAS  Google Scholar 

  31. Milliman, J. D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Glob. Biogeochem. Cycles 7, 927–957 (1993).

    CAS  Google Scholar 

  32. Perry, C. T. et al. Implications of reef ecosystem change for the stability and maintenance of coral reef islands. Glob. Change Biol. 17, 3679–3696 (2011).

    Google Scholar 

  33. Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 329, 1517–1520 (2010).

    Google Scholar 

  34. Woodroffe, C. D. Reef-island topography and the vulnerability of atolls to sea-level rise. Glob. Planet. Change 62, 77–96 (2008).

    Google Scholar 

  35. Smith, S. & Kinsey, D. Calcium carbonate production, coral reef growth, and sea level change. Science 194, 937–939 (1976).

    CAS  Google Scholar 

  36. Grigg, R. Holocene coral reef accretion in Hawaii: a function of wave exposure and sea level history. Coral Reefs 17, 263–272 (1998).

    Google Scholar 

  37. Yates, K. K. & Halley, R. B. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay. Estuar. Coast. 29, 24–39 (2006).

    CAS  Google Scholar 

  38. Andersson, A. J. et al. Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences 6, 1811–1823 (2009).

    CAS  Google Scholar 

  39. Yates, K. & Halley, R. CO2−3 concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosci. Discuss. 3, 123–154 (2006).

    Google Scholar 

  40. Silverman, J., Lazar, B. & Erez, J. Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J. Geophys. Res. Oceans 112, C05004 (2007).

    Google Scholar 

  41. Barnes, D. & Devereux, M. Productivity and calcification on a coral reef: A survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79, 213–231 (1984).

    Google Scholar 

  42. Shamberger, K. E. F. et al. Calcification and organic production on a Hawaiian coral reef. Mar. Chem. 127, 64–75 (2011).

    CAS  Google Scholar 

  43. Morse, J. W., Zullig, J. J., Bernstein, L. D., Millero, F. J. & Milne, P. J. Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Am. J. Sci. 285, 147–185 (1985).

    CAS  Google Scholar 

  44. Cyronak, T., Santos, I. R., McMahon, A. & Eyre, B. D. Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: implications for ocean acidification. Limnol. Oceanogr. 58, 131–143 (2013).

    CAS  Google Scholar 

  45. Langdon, C. et al. Effect of elevated CO2 on the community metabolism of an experimental coral reef. Glob. Biogeochem. Cycles 17, 1011 (2003).

    Google Scholar 

  46. Morse, J. W. & Arvidson, R. S. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51–84 (2002). Comprehensive review focused on the chemical kinetics controlling the rates of reaction between sedimentary carbonate minerals and solutions.

    CAS  Google Scholar 

  47. Burdige, D. J. & Zimmerman, R. C. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol. Oceanogr. 47, 1751–1763 (2002).

    CAS  Google Scholar 

  48. Glynn, P. W. in Life and Death of Coral Reefs (ed. Birkeland, C.) 68–95 (Chapman Hall, 1997). Comprehensive review of coral reef bioerosion.

    Google Scholar 

  49. Reyes-Nivia, C., Diaz-Pulido, G., Kline, D., Guldberg, O-H. & Dove, S. Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Glob. Change Biol. 19, 1919–1929 (2013).

    Google Scholar 

  50. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    CAS  Google Scholar 

  51. Land, L. S. Diagenesis of skeletal carbonates. J. Sediment. Res. 37, 914–930 (1967).

    CAS  Google Scholar 

  52. Nash, M. C. et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Clim. Change 3, 268–272 (2013).

    CAS  Google Scholar 

  53. Andersson, A. J., MacKenzie, F. T. & Lerman, A. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am. J. Sci. 305, 875–918 (2005). Dissolution of Mg-calcite mineral phases as the 'first responders' to ocean acidification.

    CAS  Google Scholar 

  54. Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).

    CAS  Google Scholar 

  55. Green, M. & Aller, R. C. Early diagenesis of calcium carbonate in Long Island Sound sediments: benthic fluxes of Ca2+ and minor elements during seasonal periods of net dissolution. J. Mar. Res. 59, 769–794 (2001).

    CAS  Google Scholar 

  56. Tribble, G. W., Sansone, F. J. & Smith, S. V. Stoichiometric modeling of carbon diagenesis within a coral reef framework. Geochim. Cosmochim. Acta 54, 2439–2449 (1990). Extensive study of biogeochemical processes within a reef framework showing that aerobic and anaerobic oxidation of organic matter dominates early diagenesis in a reef framework.

    CAS  Google Scholar 

  57. Morse, J. W. & Mackenzie, F. T. Geochemistry of Sedimentary Carbonates (Elsevier Science and Technology, 1990). Comprehensive book addressing all aspects of sedimentary carbonate geochemistry.

    Google Scholar 

  58. Ku, T. C. W., Walter, L. M., Coleman, M. L., Blake, R. E. & Martini, A. M. Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, U.S.A. Geochim. Cosmochim. Acta 63, 2529–2546 (1999).

    CAS  Google Scholar 

  59. Eyre, B. D., Glud, R. N. & Patten, N. Mass coral spawning: a natural large scale nutrient addition experiment. Limnol. Oceanogr. 53, 997–1013 (2008).

    CAS  Google Scholar 

  60. Eyre, B. D., Santos, I. R. & Maher, D. T. Seasonal, daily and diel N2 effluxes in permeable carbonate sediments. Biogeosciences 10, 2601–2615 (2013).

    CAS  Google Scholar 

  61. Hu, X. & Cai, W. J. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget. Glob. Biogeochem. Cycles 25, GB3003 (2011).

    Google Scholar 

  62. Alongi, D. M., Trott, L. A. & Møhl, M. Strong tidal currents and labile organic matter stimulate benthic decomposition and carbonate fluxes on the southern Great Barrier Reef shelf. Cont. Shelf Res. 31, 1384–1395 (2011).

    Google Scholar 

  63. Risgaard-Petersen, N., Revil, A., Meister, P. & Nielsen, L. P. Sulphur, iron, and calcium cycling associated with natural electric currents running through marine sediment. Geochim. Cosmochim. Acta 92, 1–13 (2012).

    CAS  Google Scholar 

  64. Rao, A. M. F., Malkin, S. Y., Montserrat, F. & Meysman, F. J. R. Alkalinity production in intertidal sands intensified by lugworm bioirrigation. Estuar. Coast. Shelf Sci. 148, 36–47 (2014).

    CAS  Google Scholar 

  65. Glud, R. N., Eyre, B. D. & Patten, N. Biogeochemical responses to mass coral spawning at the Great Barrier Reef: effects on respiration and primary production. Limnol. Oceanogr. 53, 1014–1024 (2008).

    CAS  Google Scholar 

  66. Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B. & Andersson, A. J. Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences 10, 4897–4909 (2013).

    Google Scholar 

  67. Tribollet, A. in Current Developments in Bioerosion (eds Wisshak, M. & Tapanila, L.) 67–94 (Erlangen Earth Conference Series, Springer, 2008).

    Google Scholar 

  68. Neumann, A. C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11, 92–108 (1966).

    Google Scholar 

  69. Schneider, K. et al. Potential influence of sea cucumbers on coral reef CaCO3 budget: a case study at One Tree Reef. J. Geophys. Res. 116, G04032 (2011).

    Google Scholar 

  70. Reyes-Nivia, C., Diaz-Pulido, G. & Dove, S. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae. Biogeosci. Discuss. 11, 2993–3021 (2014).

    Google Scholar 

  71. Fang, J. K. H. et al. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Glob. Change Biol. 19, 3581–3591 (2013).

    Google Scholar 

  72. van Woesik, R., van Woesik, K., van Woesik, L. & van Woesik, S. Effects of ocean acidification on the dissolution rates of reef-coral skeletons. PeerJ 1, e208 (2013).

    Google Scholar 

  73. Peterson, M. N. A. Calcite: rates of dissolution in a vertical profile in the Central Pacific. Science 154, 1542–1544 (1966).

    CAS  Google Scholar 

  74. Milliman, J. D. Dissolution of aragonite, Mg-calcite, and calcite in the North Atlantic Ocean. Geology 3, 461–462 (1975).

    CAS  Google Scholar 

  75. Andersson, A., Bates, N. & Mackenzie, F. Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil's Hole, Bermuda. Aquat. Geochem. 13, 237–264 (2007).

    CAS  Google Scholar 

  76. Manzello, D. P. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl Acad. Sci. USA 105, 10450–10455 (2008).

    CAS  Google Scholar 

  77. Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change 1, 165–169 (2011).

    CAS  Google Scholar 

  78. Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

    CAS  Google Scholar 

  79. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).

    CAS  Google Scholar 

  80. Silverman, J. et al. Carbon turnover rates in the One Tree Island reef: A 40-year perspective. J. Geophys. Res. Biogeosci. 117, G03023 (2012).

    Google Scholar 

  81. Walter, L. M. & Burton, E. A. The effect of orthophosphate on carbonate mineral dissolution rates in seawater. Chem. Geol. 56, 313–323 (1986).

    CAS  Google Scholar 

  82. Brodie, J., Fabricius, K., De'ath, G. & Okaji, K. Are increased nutrient inputs responsible for more outbreaks of crown-of-thorns starfish? An appraisal of the evidence. Mar. Pollut. Bull. 51, 266–278 (2005).

    CAS  Google Scholar 

  83. Cyronak, T., Santos, I. R., Schulz, K. G. & Eyre, B. D. Enhanced coral reef acidification driven by regional biogeochemical feedbacks. Geophys. Res. Lett. 41, 5538–5546 (2014).

    CAS  Google Scholar 

  84. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Google Scholar 

  85. Kayanne, H. et al. Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Glob. Biogeochem. Cycles 19, 1–11 (2005).

    Google Scholar 

  86. Holland, G. J. & Webster, P. J. Heightened tropical cyclone activity in the North Atlantic: Natural variability or climate trend? Phil. Trans. R. Soc. A 365, 2695–2716 (2007).

    Google Scholar 

  87. Gray, S. E. C., DeGrandpre, M. D., Langdon, C. & Corredor, J. E. Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Glob. Biogeochem. Cycles 26, GB3012 (2012).

    Google Scholar 

  88. Manzello, D., Enochs, I., Musielewicz, S., Carlton, R. & Gledhill, D. Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world. J. Geophys. Res. Oceans 118, 5312–5321 (2013).

    CAS  Google Scholar 

  89. Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trend. Ecol. Evol. 25, 633–642 (2010).

    Google Scholar 

  90. Kleypas, J. A., Anthony, K. R. N. & Gattuso, J-P. Coral reefs modify their seawater carbon chemistry — case study from a barrier reef (Moorea, French Polynesia). Glob. Change Biol. 17, 3667–3678 (2011).

    Google Scholar 

  91. Anthony, K. R. N., Kleypas, J. A. & Gattuso, J-P. Coral reefs modify their seawater carbon chemistry — implications for impacts of ocean acidification. Glob. Change Biol. 17, 3655–3666 (2011).

    Google Scholar 

  92. Andersson, A. J. & Mackenzie, F. T. Revisiting four scientific debates in ocean acidification research. Biogeosciences 9, 893–905 (2012).

    CAS  Google Scholar 

  93. Balzer, W. & Wefer, G. Dissolution of carbonate minerals in a subtropical shallow marine environment. Mar. Chem. 10, 545–558 (1981).

    CAS  Google Scholar 

  94. Yates, K. & Halley, R. Measuring coral reef community metabolism using new benthic chamber technology. Coral Reefs 22, 247–255 (2003).

    Google Scholar 

  95. Anthony, K., Diaz-Pulido, G., Verlinden, N., Tilbrook, B. & Andersson, A. Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosci. Discuss. 10, 1831–1865 (2013).

    Google Scholar 

  96. Rao, A. M. F., Polerecky, L., Ionescu, D., Meysman, F. J. R. & de Beer, D. The influence of pore-water advection, benthic photosynthesis, and respiration on calcium carbonate dynamics in reef sands. Limnol. Oceanogr. 57, 809–825 (2012).

    CAS  Google Scholar 

  97. Leclercq, N., Gattuso, J. P. & Jaubert, J. Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol. Oceanogr. 47, 558–564 (2002).

    CAS  Google Scholar 

  98. Boucher, G., Clavier, J., Hily, C. & Gattuso, J. Contribution of soft-bottoms to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia). J. Exp. Biol. Ecol. 225, 269–283 (1998).

    Google Scholar 

Download references

Acknowledgements

The outline for this manuscript was penned when B.D.E. was visiting Scripps Institution of Oceanography while on sabbatical supported by a Southern Cross University Study Leave grant. This work was funded by Australian Research Council Grants DP110103638 and LP100200732 awarded to B.D.E. and NSF 12-55042 to A.J.A. I. Alexander assisted with drawing some of the figures and M. Eyre assisted with the endnote database and proofing.

Author information

Authors and Affiliations

Authors

Contributions

B.D.E. and A.J.A. conceived the review. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Bradley D. Eyre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyre, B., Andersson, A. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Clim Change 4, 969–976 (2014). https://doi.org/10.1038/nclimate2380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing