Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accelerated microbial turnover but constant growth efficiency with warming in soil

Abstract

Rising temperatures are expected to reduce global soil carbon (C) stocks, driving a positive feedback to climate change1,2,3. However, the mechanisms underlying this prediction are not well understood, including how temperature affects microbial enzyme kinetics, growth efficiency (MGE), and turnover4,5. Here, in a laboratory study, we show that microbial turnover accelerates with warming and, along with enzyme kinetics, determines the response of microbial respiration to temperature change. In contrast, MGE, which is generally thought to decline with warming6,7,8, showed no temperature sensitivity. A microbial-enzyme model suggests that such temperature sensitive microbial turnover would promote soil C accumulation with warming, in contrast to reduced soil C predicted by traditional biogeochemical models. Furthermore, the effect of increased microbial turnover differs from the effects of reduced MGE, causing larger increases in soil C stocks. Our results demonstrate that the response of soil C to warming is affected by changes in microbial turnover. This control should be included in the next generation of models to improve prediction of soil C feedbacks to warming.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial growth efficiency (MGE) after a 7-day incubation at different temperatures for a mineral and an organic soil.
Figure 2: Turnover rates (τ, d−1) as a function of temperature for a mineral and an organic soil.
Figure 3: Modelled effect of temperature and incubation duration on apparent microbial growth efficiency (MGE).
Figure 4: The relative change in soil organic C (SOC) and microbial biomass C (MBC) from 5 to 20 °C under three scenarios using the AWB model.

Similar content being viewed by others

References

  1. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  2. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    Article  CAS  Google Scholar 

  3. Schlesinger, W. H. & Andrews, J. A. Soil respiration and the global carbon cycle. Biogeochemistry 48, 7–20 (2000).

    Article  CAS  Google Scholar 

  4. Ågren, G. I. & Wetterstedt, J. A. M. What determines the temperature response of soil organic matter decomposition? Soil Biol. Biochem. 39, 1794–1798 (2007).

    Article  Google Scholar 

  5. Li, J. W., Wang, G. S., Allison, S. D., Mayes, M. A. & Luo, Y. Q. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 119, 67–84 (2014).

    Article  Google Scholar 

  6. Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nature Geosci. 3, 336–340 (2010).

    Article  CAS  Google Scholar 

  7. Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).

    Article  CAS  Google Scholar 

  8. Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L. & Richter, A. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecol. Lett. 16, 930–939 (2013).

    Article  Google Scholar 

  9. Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nature Clim. Change 3, 909–912 (2013).

    Article  CAS  Google Scholar 

  10. Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, http://dx.doi.org/10.3389/fmicb.2012.00348 (2012).

  11. Billings, S. A. & Ballantyne, F. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).

    Article  Google Scholar 

  12. Allison, S. D. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012).

    Article  CAS  Google Scholar 

  13. Manzoni, S., Schaeffer, S. M., Katul, G., Porporato, A. & Schimel, J. P. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol. Biochem. 73, 69–83 (2014).

    Article  CAS  Google Scholar 

  14. Dijkstra, P. et al. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem. 43, 2023–2031 (2011).

    Article  CAS  Google Scholar 

  15. Steinweg, J. M., Plante, A. F., Conant, R. T., Paul, E. A. & Tanaka, D. L. Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol. Biochem. 40, 2722–2728 (2008).

    Article  CAS  Google Scholar 

  16. Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).

    Article  Google Scholar 

  17. Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nature Clim. Change 3, 395–398 (2013).

    Article  CAS  Google Scholar 

  18. Joergensen, R. G., Brookes, P. C. & Jenkinson, D. S. Survival of the soil microbial biomass at elevated temperatures. Soil Biol. Biochem. 22, 1129–1136 (1990).

    Article  Google Scholar 

  19. McGill, W. B., Shields, J. A. & Paul, E. A. Relation between carbon and nitrogen turnover in soil organic fractions of microbial origin. Soil Biol. Biochem. 7, 57–63 (1975).

    Article  CAS  Google Scholar 

  20. Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol. Lett. 17, 680–690 (2014).

    Article  Google Scholar 

  21. Frey, S. D., Gupta, V., Elliott, E. T. & Paustian, K. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biol. Biochem. 33, 1759–1768 (2001).

    Article  CAS  Google Scholar 

  22. Roels, J. A. Application of macroscopic principles to microbial-metabolism. Biotechnol. Bioeng. 22, 2457–2514 (1980).

    Article  CAS  Google Scholar 

  23. Gommers, P. J. F., Vanschie, B. J., Vandijken, J. P. & Kuenen, J. G. Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization. Biotechnol. Bioeng. 32, 86–94 (1988).

    Article  CAS  Google Scholar 

  24. Van Bodegom, P. Microbial maintenance: A critical review on its quantification. Microb. Ecol. 53, 513–523 (2007).

    Article  Google Scholar 

  25. Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).

    Article  Google Scholar 

  26. Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).

    Article  Google Scholar 

  27. Frey, S. D., Drijber, R., Smith, H. & Melillo, J. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biol. Biochem. 40, 2904–2907 (2008).

    Article  CAS  Google Scholar 

  28. Curtin, D., Beare, M. H. & Hernandez-Ramirez, G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci. Soc. Am. J. 76, 2055–2067 (2012).

    Article  CAS  Google Scholar 

  29. Manzoni, S. & Porporato, A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol. Biochem. 41, 1355–1379 (2009).

    Article  CAS  Google Scholar 

  30. Dijkstra, P. et al. Probing carbon flux patterns through soil microbial metabolic networks using parallel position-specific tracer labeling. Soil Biol. Biochem. 43, 126–132 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. Miller contributed to experimental work and N. Aspelin assisted with soil sample collection. This research is supported by an NSF grant (DEB-1146449) to P.D. and NSF MRI (DBI-0723250 and 1126840) to G.W.K. and T. Whitham.

Author information

Authors and Affiliations

Authors

Contributions

S.B.H., P.D., E.S., B.A.H. and G.W.K. conceived the project, S.B.H. conducted the soil incubation experiment and led the manuscript preparation. R.K.K. guided site selection and provided the soils in the study. S.B.H., K.J.v.G. and P.D. contributed to data analysis and interpretation. S.D.A. carried out the microbial-enzyme modelling. All authors contributed to writing the final manuscript.

Corresponding author

Correspondence to Paul Dijkstra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagerty, S., van Groenigen, K., Allison, S. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Clim Change 4, 903–906 (2014). https://doi.org/10.1038/nclimate2361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2361

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology