Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seasonal aspects of the recent pause in surface warming

Abstract

Factors involved in the recent pause in the rise of global mean temperatures are examined seasonally. For 1999 to 2012, the hiatus in surface warming is mainly evident in the central and eastern Pacific. It is manifested as strong anomalous easterly trade winds, distinctive sea-level pressure patterns, and large rainfall anomalies in the Pacific, which resemble the Pacific Decadal Oscillation (PDO). These features are accompanied by upper tropospheric teleconnection wave patterns that extend throughout the Pacific, to polar regions, and into the Atlantic. The extratropical features are particularly strong during winter. By using an idealized heating to force a comprehensive atmospheric model, the large negative anomalous latent heating associated with the observed deficit in central tropical Pacific rainfall is shown to be mainly responsible for the global quasi-stationary waves in the upper troposphere. The wave patterns in turn created persistent regional climate anomalies, increasing the odds of cold winters in Europe. Hence, tropical Pacific forcing of the atmosphere such as that associated with a negative phase of the PDO produces many of the pronounced atmospheric circulation anomalies observed globally during the hiatus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global mean surface temperature from NOAA, as anomalies relative to 1900–1999 plotted with linear trends for 1970–2013 (blue) and 1998–2013 (red).
Figure 2: The PDO based on an empirical orthogonal function analysis of SST anomalies with the global mean removed from 1900 to 2012 in the 20°–70° N, 110° E–100° W region of the North Pacific, which explains 25% of the variance.
Figure 3: Regime differences between 1999–2012 and 1976–1998.
Figure 4: Vertically integrated diabatic heating and divergent wind component for the difference between 1999–2012 and 1979–1998.
Figure 5: The 300 hPa streamfunction for the differences between 1999–2012 and 1979–1998.
Figure 6: Modelled 300 hPa streamfunction response.

Similar content being viewed by others

References

  1. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earth’s Future 1, 19–32 (2013).

    Article  Google Scholar 

  2. Trenberth, K. E., Caron, J. M., Stepaniak, D. P. & Worley, S. The evolution of ENSO and global atmospheric surface temperatures. J. Geophys. Res. 107, 4065 (2002).

    Article  Google Scholar 

  3. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  4. Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012).

    Google Scholar 

  5. Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nature Geosci. 7, 158–160 (2014).

    Article  CAS  Google Scholar 

  6. Santer, B. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185–189 (2014).

    Article  CAS  Google Scholar 

  7. Kosaka, Y. & Xie, S-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  8. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  9. England, M. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  10. Palmer, T. Record-breaking winters and global climate change. Science 344, 803–804 (2014).

    Article  CAS  Google Scholar 

  11. Deser, C., Alexander, M. A., Xie, S-P. & Phillips, A. S. Sea surface temperature variability: Patterns and mechanisms. Ann. Rev. Mar. Sci. 2, 115–143 (2010).

    Article  Google Scholar 

  12. Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. 39, L13602 (2012).

    Article  Google Scholar 

  13. Holland, P. R. & Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nature Geosci. 5, 872–875 (2012).

    Article  CAS  Google Scholar 

  14. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  15. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. T. & Trenberth, K. E. Externally forced and internally generated decadal climate variability in the Pacific. J. Clim. 26, 7298–7310 (2013).

    Article  Google Scholar 

  16. L’Heureux, M., Lee, S. & Lyon, B. Recent multi-decadal strengthening of the Walker Circulation across the tropical Pacific. Nature Clim. Change 3, 571–576 (2013).

    Article  Google Scholar 

  17. Trenberth, K. E. & Guillemot, C. J. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim. Dynam. 14, 213–231 (1998).

    Article  Google Scholar 

  18. Halpert, M. S. & Ropelewski, C. F. Atlas of tropical sea surface temperature and surface winds. NOAA Atlas No. 8 (1989)

  19. Trenberth, K. E. & Stepaniak, D. P. Co-variability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Clim. 16, 3691–3705 (2003).

    Article  Google Scholar 

  20. Trenberth, K. E. & Stepaniak, D. P. Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J. Clim. 16, 3706–3722 (2003).

    Article  Google Scholar 

  21. Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103, 14291–14324 (1998).

    Article  Google Scholar 

  22. Barsugli, J. J. & Sardeshmukh, P. D. Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Clim. 15, 3427–3442 (2002).

    Article  Google Scholar 

  23. Teng, H. & Branstator, G. A zonal wavenumber 3 pattern of Northern Hemisphere wintertime planetary wave variability at high latitudes. J. Clim. 25, 6756–6769 (2012).

    Article  Google Scholar 

  24. Butler, A. H., Polvani, L. M. & Deser, C. Separating the stratospheric and tropospheric pathways of El Niño–Southern Oscillation teleconnections. Environ. Res. Lett. 9, 024014 (2014).

    Article  Google Scholar 

  25. Seo, K-H. & Son, S-W. The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian Oscillation during northern winter. J. Atmos. Sci. 69, 79–96 (2012).

    Article  Google Scholar 

  26. Simmons, A. J., Wallace, J. M. & Branstator, G. W. Barotropic wave propagation and instability and atmospheric teleconnection patterns. J. Atmos. Sci. 40, 1363–1392 (1983).

    Article  Google Scholar 

  27. Palmer, T. N. & Mansfield, D. A. Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical East and West Pacific. Nature 310, 483–485 (1984).

    Article  Google Scholar 

  28. Lee, S., Gong, T. T., Johnson, N. C., Feldstein, S. B. & Pollard, D. On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958–2001. J. Clim. 24, 4350–4367 (2011).

    Article  Google Scholar 

  29. Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and North Atlantic Oscillation. Nature 455, 523–527 (2008).

    Article  CAS  Google Scholar 

  30. Lin, H., Brunet, G. & Derome, J. An observed connection between the North Atlantic Oscillation and the Madden–Julian Oscillation. J. Clim. 22, 364–380 (2009).

    Article  Google Scholar 

  31. Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–213 (2014).

    Article  CAS  Google Scholar 

  32. Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    Article  Google Scholar 

  33. Tang, Q., Zhang, X. & Francis, J. A. Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nature Clim. Change 4, 45–50 (2014).

    Article  Google Scholar 

  34. Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 4734–4739 (2013).

    Article  Google Scholar 

  35. Barnes, E. A., Dunn-Sigouin, E., Masato, G. & Woollings, T. Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett. 41, 638–644 (2014).

    Article  Google Scholar 

  36. Wallace, J. M., Held, I. M., Thompson, D. W. J., Trenberth, K. E. & Walsh, J. E. Global warming and winter weather. Science 343, 729–730 (2014).

    Article  CAS  Google Scholar 

  37. Yoo, C., Feldstein, S. & Lee, S. Impact of the Madden–Julian Oscillation (MJO) trend on the polar amplification of surface air temperature during 1979–2008 boreal winter. Geophys. Res. Lett. 38, L24804 (2011).

    Article  Google Scholar 

  38. Lee, S. Testing of the tropically excited Arctic warming (TEAM) mechanism with traditional El Niño and La Niña. J. Clim. 25, 4015–4022 (2012).

    Article  Google Scholar 

  39. Lee, S. A theory for polar amplification from a general circulation perspective. Asia-Pacific J. Atmos. Sci. 50, 31–43 (2014).

    Article  Google Scholar 

  40. Ding, Q., Battisti, D. S. & Küttel, M. Winter warming in West Antarctica caused by central tropical Pacific warming. Nature Geosci. 4, 398–403 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation. This research is partially sponsored by NASA under grant NNX09AH89G.

Author information

Authors and Affiliations

Authors

Contributions

K.E.T. led the writing of the paper and conceived the study. J.T.F. and A.S.P. analysed the data to produce most of the figures, G.B. carried out the modelling. All authors contributed to data interpretation and writing of the manuscript.

Corresponding author

Correspondence to Kevin E. Trenberth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trenberth, K., Fasullo, J., Branstator, G. et al. Seasonal aspects of the recent pause in surface warming. Nature Clim Change 4, 911–916 (2014). https://doi.org/10.1038/nclimate2341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing