Potential influences on the United Kingdom's floods of winter 2013/14

Abstract

During the winter of 2013/14, much of the UK experienced repeated intense rainfall events and flooding. This had a considerable impact on property and transport infrastructure. A key question is whether the burning of fossil fuels is changing the frequency of extremes, and if so to what extent. We assess the scale of the winter flooding before reviewing a broad range of Earth system drivers affecting UK rainfall. Some drivers can be potentially disregarded for these specific storms whereas others are likely to have increased their risk of occurrence. We discuss the requirements of hydrological models to transform rainfall into river flows and flooding. To determine any general changing flood risk, we argue that accurate modelling needs to capture evolving understanding of UK rainfall interactions with a broad set of factors. This includes changes to multiscale atmospheric, oceanic, solar and sea-ice features, and land-use and demographics. Ensembles of such model simulations may be needed to build probability distributions of extremes for both pre-industrial and contemporary concentration levels of atmospheric greenhouse gases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: UK rainfall.
Figure 2: River flows at Kingston on the River Thames, UK, and associated rainfall and groundwater levels.
Figure 3: Monthly river flows for major UK rivers for December 2013.
Figure 4: Monthly river flows for major UK rivers for January 2014.
Figure 5: Monthly river flows for major UK rivers for February 2014.
Figure 6: Schematic of potential flood drivers.

References

  1. 1

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Met. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  2. 2

    Stott, P. A. et al. Observational constraints on past attributable warming and predictions of future global warming. J. Clim. 19, 3055–3069 (2006).

    Article  Google Scholar 

  3. 3

    Imbers, J., Lopez, A., Huntingford, C. & Allen, M. R. Testing the robustness of the anthropogenic climate change detection statements using different empirical models. J. Geophys. Res. Atm. 118, 3192–3199 (2013).

    Article  Google Scholar 

  4. 4

    Boe, J. L., Hall, A. & Qu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nature Geosci. 2, 341–343 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Osborn, T. J., Hulme, M., Jones, P. D. & Basnett, T. A. Observed trends in the daily intensity of United Kingdom precipitation. Int. J. Climatol. 20, 347–364 (2000).

    Article  Google Scholar 

  6. 6

    Zhang, X. B. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–464 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Min, S. K., Zhang, X. B. & Zwiers, F. Human-induced Arctic moistening. Science 320, 518–520 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Polson, D., Hegerl, G. C., Zhang, X. B. & Osborn, T. J. Causes of robust seasonal land precipitation changes. J. Clim. 26, 6679–6697 (2013).

    Article  Google Scholar 

  9. 9

    Marvel, K. & Bonfils, C. Identifying external influences on global precipitation. Proc. Natl Acad. Sci. USA 110, 19301–19306 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Lehtonen, I., Ruosteenoja, K. & Jylhä, K. Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles. Int. J. Climatol. 34, 1208–1222 (2013).

    Article  Google Scholar 

  11. 11

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  12. 12

    IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  13. 13

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12, 1029–1136 (Cambridge Univ. Press, 2013).

    Google Scholar 

  14. 14

    Hirabayashi, Y. et al. Global flood risk under climate change. Nature Clim. Change 3, 816–821 (2013).

    Article  Google Scholar 

  15. 15

    Peterson, T. C. et al. Explaining extreme events of 2012 from a climate perspective. Bull. Am. Meteorol. Soc. 94, S1–S74 (2013).

    Article  Google Scholar 

  16. 16

    Groisman, P. Y. et al. Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350 (2005).

    Article  Google Scholar 

  17. 17

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  18. 18

    Huntingford, C. et al. Regional climate-model predictions of extreme rainfall for a changing climate. Q. J. R. Meteorol. Soc. 129, 1607–1621 (2003).

    Article  Google Scholar 

  19. 19

    Gao, X. J., Pal, J. S. & Giorgi, F. Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys. Res. Lett. 33, L03706 (2006).

    Article  Google Scholar 

  20. 20

    McCabe, G. J. & Wolock, D. M. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Clim. Change 99, 141–153 (2010).

    Article  Google Scholar 

  21. 21

    Hannaford, J. & Hall, J. in Changes in Flood Risk in Europe (ed. Kundzewicz, Z.) 344–361 (International Association of Hydrological Sciences (IAHS) Press, 2012).

    Google Scholar 

  22. 22

    Hannaford, J. & Marsh, T. J. High-flow and flood trends in a network of undisturbed catchments in the UK. Int. J. Climatol. 28, 1325–1338 (2008).

    Article  Google Scholar 

  23. 23

    Jones, M. R., Fowler, H. J., Kilsby, C. G. & Blenkinsop, S. An assessment of changes in seasonal and annual extreme rainfall in the UK between 1961 and 2009. Int. J. Climatol. 33, 1178–1194 (2013).

    Article  Google Scholar 

  24. 24

    Marsh, T. & Harvey, C. L. The Thames flood series: a lack of trend in flood magnitude and a decline in maximum levels. Hydrol. Res. 43, 203–214 (2012).

    Article  Google Scholar 

  25. 25

    Wilby, R. L. & Quinn, N. W. Reconstructing multi-decadal variations in fluvial flood risk using atmospheric circulation patterns. J. Hydrol. 487, 109–121 (2013).

    Article  Google Scholar 

  26. 26

    Macdonald, N. Trends in flood seasonality of the River Ouse (Northern England) from archive and instrumental sources since AD 1600. Clim. Change 110, 901–923 (2012).

    Article  Google Scholar 

  27. 27

    Robson, A. J. Evidence for trends in UK flooding. Phil. Trans. R. Soc. A 360, 1327–1343 (2002).

    Article  Google Scholar 

  28. 28

    Screen, J. A. Influence of Arctic sea ice on European summer precipitation. Environ. Res. Lett. 8, 044015 (2013).

    Article  Google Scholar 

  29. 29

    Sutton, R. T. & Dong, B. W. Atlantic Ocean influence on a shift in European climate in the 1990s. Nature Geosci. 5, 788–792 (2012).

    CAS  Article  Google Scholar 

  30. 30

    Ambaum, M. H. P., Hoskins, B. J. & Stephenson, D. B. Arctic oscillation or North Atlantic oscillation? J. Clim. 14, 3495–3507 (2001).

    Article  Google Scholar 

  31. 31

    Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).

    Article  Google Scholar 

  32. 32

    Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398, 320–323 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Omrani, N. E., Keenlyside, N. S., Bader, J. & Manzini, E. Stratosphere key for wintertime atmospheric response to warm Atlantic decadal conditions. Clim. Dynam. 42, 649–663 (2014).

    Article  Google Scholar 

  34. 34

    Dong, B., Sutton, R. T. & Woollings, T. Changes of interannual NAO variability in response to greenhouse gases forcing. Clim. Dynam. 37, 1621–1641 (2011).

    Article  Google Scholar 

  35. 35

    Slingo, J. et al. The recent storms and floods in the UK (Met Office, and Centre for Ecology and Hydrology, 2014); http://www.metoffice.gov.uk/media/pdf/n/i/Recent_Storms_Briefing_Final_07023.pdf

    Google Scholar 

  36. 36

    Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L. & Roeckner, E. The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Clim. 19, 3863–3881 (2006).

    Article  Google Scholar 

  37. 37

    Ineson, S. & Scaife, A. A. The role of the stratosphere in the European climate response to El Nino. Nature Geosci. 2, 32–36 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Palmer, T. N. & Owen, J. A. A possible relationship between some severe winters in North America and enhanced convective activity over the tropical west-Pacific. Mon. Weath. Rev. 114, 648–651 (1986).

    Article  Google Scholar 

  39. 39

    Eady, E. T. Long waves and cyclone waves. Tellus 1, 33–52 (1949).

    Article  Google Scholar 

  40. 40

    Slingo, J. M. Extratropical forcing of tropical convection in a northern winter simulation with the UGAMP GCM. Q. J. R. Meteorol. Soc. 124, 27–51 (1998).

    Article  Google Scholar 

  41. 41

    Wang, S. Y., Hakala, K., Gillies, R. R. & Capehart, W. J. The Pacific quasi-decadal oscillation (QDO): An important precursor toward anticipating major flood events in the Missouri River Basin? Geophys. Res. Lett. 41, 991–997 (2014).

    Article  Google Scholar 

  42. 42

    Baldwin, M. P. et al. The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001).

    Article  Google Scholar 

  43. 43

    Marshall, A. G. & Scaife, A. A. Impact of the QBO on surface winter climate. J. Geophys. Res. Atm. 114, D18110 (2009).

    Article  Google Scholar 

  44. 44

    Folland, C. K., Scaife, A. A., Lindesay, J. & Stephenson, D. B. How potentially predictable is northern European winter climate a season ahead? Int. J. Climatol. 32, 801–818 (2012).

    Article  Google Scholar 

  45. 45

    Pascoe, C. L., Gray, L. J. & Scaife, A. A. A GCM study of the influence of equatorial winds on the timing of sudden stratospheric warmings. Geophys. Res. Lett. 33, L06825 (2006).

    Article  Google Scholar 

  46. 46

    Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A. & Knight, J. R. European climate extremes and the North Atlantic Oscillation. J. Clim. 21, 72–83 (2008).

    Article  Google Scholar 

  47. 47

    Boer, G. J. & Hamilton, K. QBO influence on extratropical predictive skill. Clim. Dynam. 31, 987–1000 (2008).

    Article  Google Scholar 

  48. 48

    Jaiser, R., Dethloff, K., Handorf, D., Rinke, A. & Cohen, J. Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64, 11595 (2012).

    Article  Google Scholar 

  49. 49

    Petoukhov, V. & Semenov, V. A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. Atm. 115, D21111 (2010).

    Article  Google Scholar 

  50. 50

    Fereday, D. R., Maidens, A., Arribas, A., Scaife, A. A. & Knight, J. R. Seasonal forecasts of northern hemisphere winter 2009/10. Environ. Res. Lett. 7, 034031 (2012).

    Article  Google Scholar 

  51. 51

    Liu, J. P., Curry, J. A., Wang, H. J., Song, M. R. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA 109, 4074–4079, (2012).

    CAS  Article  Google Scholar 

  52. 52

    Screen, J., Deser, C., Simmonds, I. & Tomas, R. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim. Dynam. 43, 333–334 (2014).

    Article  Google Scholar 

  53. 53

    Gerber, F., Sedlacek, J. & Knutti, R. Influence of the western North Atlantic and the Barents Sea on European winter climate. Geophys. Res. Lett. 41, 561–567 (2014).

    Article  Google Scholar 

  54. 54

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    Article  Google Scholar 

  55. 55

    Screen, J. A. & Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40, 959–964 (2013).

    Article  Google Scholar 

  56. 56

    Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 4734–4739 (2013).

    Article  Google Scholar 

  57. 57

    Barnes, E. A., Dunn-Sigouin, E., Masato, G. & Woollings, T. Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett. 41, 638–644 (2014).

    Article  Google Scholar 

  58. 58

    Fleitmann, D. et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300, 1737–1739 (2003).

    CAS  Article  Google Scholar 

  59. 59

    Lockwood, M. Solar influence on global and regional climates. Surveys Geophys. 33, 503–534 (2012).

    Article  Google Scholar 

  60. 60

    Lockwood, M. Solar change and climate: an update in the light of the current exceptional solar minimum. Proc. R. Soc. A 466, 303–329 (2010).

    Article  Google Scholar 

  61. 61

    Lockwood, M. Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Solar Phys. 10, 4 (2013).

    Article  Google Scholar 

  62. 62

    Jones, G. S., Lockwood, M. & Stott, P. A. What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes? J. Geophys. Res. Atm. 117, D05103 (2012).

    Google Scholar 

  63. 63

    Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010).

    Article  Google Scholar 

  64. 64

    Gray, L. J. et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos. 118, 13,405–13,420 (2013).

    Article  Google Scholar 

  65. 65

    Lockwood, M., Harrison, R. G., Woollings, T. & Solanki, S. K. Are cold winters in Europe associated with low solar activity? Environ. Res. Lett. 5, 024001 (2010).

    Article  CAS  Google Scholar 

  66. 66

    Ineson, S. et al. Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geosci. 4, 753–757 (2011).

    CAS  Article  Google Scholar 

  67. 67

    Frisia, S., Borsato, A., Preto, N. & McDermott, F. Late Holocene annual growth in three Alpine stalagmites records the influence of solar activity and the North Atlantic Oscillation on winter climate. Earth Planet. Sci. Lett. 216, 411–424 (2003).

    CAS  Article  Google Scholar 

  68. 68

    Wirth, S. B., Glur, L., Gilli, A. & Anselmetti, F. S. Holocene flood frequency across the Central Alps—solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quat. Sci. Rev. 80, 112–128 (2013).

    Article  Google Scholar 

  69. 69

    Davies, T. et al. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131, 1759–1782 (2005).

    Article  Google Scholar 

  70. 70

    Shapiro, M. et al. An earth-system prediction initiative for the twenty-first century. Bull. Am. Meteorol. Soc. 91, 1377–1388 (2010).

    Article  Google Scholar 

  71. 71

    Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A. & Rodwell, M. J. Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Am. Meteorol. Soc. 89, 459–470 (2008).

    Article  Google Scholar 

  72. 72

    Scaife, A. A. et al. Toward seamless prediction: calibration of climate change projections using seasonal forecasts. Bull. Am. Meteorol. Soc. 90, 1549–1551 (2009).

    Article  Google Scholar 

  73. 73

    van Ulden, A. P. & van Oldenborgh, G. J. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos. Chem. Phys. 6, 863–881 (2006).

    CAS  Article  Google Scholar 

  74. 74

    Scaife, A. A. et al. Improved Atlantic winter blocking in a climate model. Geophys. Res. Lett. 38, L23703 (2011).

    Article  Google Scholar 

  75. 75

    Schliep, E. M., Cooley, D., Sain, S. R. & Hoeting, J. A. A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. Extremes 13, 219–239 (2010).

    Article  Google Scholar 

  76. 76

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim. Change 4, 570–576 (2014).

    Article  Google Scholar 

  77. 77

    Kendon, E. J., Roberts, N. M., Senior, C. A. & Roberts, M. J. Realism of rainfall in a very high-resolution regional climate model. J. Clim. 25, 5791–5806 (2012).

    Article  Google Scholar 

  78. 78

    Chan, S. C. et al. The value of high-resolution Met Office regional climate models in the simulation of multi-hourly precipitation extremes. J. Clim. http://dx.doi.org/10.1175/JCLI-D-13-00723.1 (2014).

  79. 79

    Bell, V. A. et al. How might climate change affect river flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. J. Hydrol. 442, 89–104 (2012).

    Article  Google Scholar 

  80. 80

    Cloke, H. L., Wetterhall, F., He, Y., Freer, J. E. & Pappenberger, F. Modelling climate impact on floods with ensemble climate projections. Q. J. R. Meteorol. Soc. 139, 282–297 (2013).

    Article  Google Scholar 

  81. 81

    Stone, D. A. & Allen, M. R. The end-to-end attribution problem: From emissions to impacts. Clim. Change 71, 303–318 (2005).

    Article  Google Scholar 

  82. 82

    Jongman, B. et al. Increasing stress on disaster-risk finance due to large floods. Nature Clim. Change 4, 264–268 (2014).

    Article  Google Scholar 

  83. 83

    Prudhomme, C., Kay, A. L., Crooks, S. & Reynard, N. Climate change and river flooding: Part 2 sensitivity characterisation for british catchments and example vulnerability assessments. Clim. Change 119, 949–964 (2013).

    Article  Google Scholar 

  84. 84

    Prudhomme, C., Crooks, S., Kay, A. L. & Reynard, N. Climate change and river flooding: part 1 classifying the sensitivity of British catchments. Clim. Change 119, 933–948 (2013).

    Article  Google Scholar 

  85. 85

    Kay, A. L., Crooks, S. M., Davies, H. N., Prudhomme, C. & Reynard, N. S. Probabilistic impacts of climate change on flood frequency using response surfaces I: England and Wales. Reg. Environ. Change 14, 1215–1227 (2013).

    Article  Google Scholar 

  86. 86

    Kay, A. L., Crooks, S. M. & Reynard, N. S. Using response surfaces to estimate impacts of climate change on flood peaks: assessment of uncertainty. Hydrol. Processes http://dx.doi.org/10.1002/hyp.10000 (2013).

  87. 87

    Wheater, H. S. Flood hazard and management: a UK perspective. Phil. Trans. R. Soc. A 364, 2135–2145 (2006).

    Article  Google Scholar 

  88. 88

    O'Connell, E., Ewen, J., O'Donnell, G. & Quinn, P. Is there a link between agricultural land-use management and flooding? Hydrol. Earth System Sci. 11, 96–107 (2007).

    Article  Google Scholar 

  89. 89

    Rodriguez, F., Andrieu, H. & Creutin, J. D. Surface runoff in urban catchments: morphological identification of unit hydrographs from urban databanks. J. Hydrol. 283, 146–168 (2003).

    Article  Google Scholar 

  90. 90

    Bosello, F., Nicholls, R. J., Richards, J., Roson, R. & Tol, R. S. J. Economic impacts of climate change in Europe: sea-level rise. Clim. Change 112, 63–81 (2012).

    Article  Google Scholar 

  91. 91

    Menendez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. Oceans 115, C10011 (2010).

    Article  Google Scholar 

  92. 92

    Lowe, J. A. et al. UK Climate Projections Science Report: Marine and Coastal Projections (Met Office Hadley Centre, 2009).

    Google Scholar 

  93. 93

    Pardaens, A. K., Lowe, J. A., Brown, S., Nicholls, R. J. & de Gusmao, D. Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions. Geophys. Res. Lett. 38, L12604 (2011).

    Article  Google Scholar 

  94. 94

    Hunter, J. A simple technique for estimating an allowance for uncertain sea-level rise. Clim. Change 113, 239–252 (2012).

    Article  Google Scholar 

  95. 95

    Allen, M. Liability for climate change. Nature 421, 891–892 (2003).

    CAS  Article  Google Scholar 

  96. 96

    Pall, P. et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470, 382–385 (2011).

    CAS  Article  Google Scholar 

  97. 97

    Christidis, N. et al. A New HadGEM3-A-based system for attribution of weather- and climate-related extreme events. J. Clim 26, 2756–2783 (2013).

    Article  Google Scholar 

  98. 98

    Allen, M. Do-it-yourself climate prediction. Nature 401, 642–642 (1999).

    Article  Google Scholar 

  99. 99

    Kay, A. L., Crooks, S. M., Pall, P. & Stone, D. A. Attribution of autumn/winter 2000 flood risk in England to anthropogenic climate change: A catchment-based study. J. Hydrol. 406, 97–112 (2011).

    Article  Google Scholar 

  100. 100

    Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nature Clim. Change 3, 1033–1038 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

C.H., T.M., J.H., A.L.K., C.P., N.S.R., S.P., H.C.W., V.A.B., M.B. and A.J. at the Centre for Ecology and Hydrology were supported by the NERC National Capability fund. A.A.S., E.J.K., J.A.L., M.R., P.A.S., T.L. and J.S. at the Met Office were supported by the Joint UK Department of Energy and Climate Change (DECC) and the Department for Environment Food and Rural Affairs (DEFRA) Met Office Hadley Centre Climate Programme (GA01101). River-flow data were obtained from the UK National River Flow Archive. J.A.S. was funded by NERC grant NE/J019585/1. C.H. was funded by the NERC HYDRA project. River-flow and groundwater-level data are provided by the Environment Agency (EA), Natural Resources Wales—Cyfoeth Naturiol Cymru, the Scottish Environment Protection Agency (SEPA) and, for Northern Ireland, the Rivers Agency and the Northern Ireland Environment Agency.

Author information

Affiliations

Authors

Contributions

C.H. conceived and designed the paper. T.M., J.H. and S.P. provided hydrological data and their interpretation. T.L. provided rainfall data. Latest research understanding was provided by A.A.S., E.J.K., J.S. and M.R. on high-resolution atmospheric modelling and processes; by A.L.K., C.P., V.A.B. and N.S.R. on flood modelling and processes; by M.L. and A.A.S. on solar–climate interactions; by J.A.L. on issues of sea-level rise and coastal flooding; by J.A.S. on sea-ice–climate interactions; by P.A.S. on rainfall trend detection and attribution; and by F.E.L.O., N.M. and M.R.A. on the fractional attributable risk statistic and large ensemble modelling. C.H., H.C.W., M.B., N.S. and A.J. discussed the overall aims of the paper. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Chris Huntingford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huntingford, C., Marsh, T., Scaife, A. et al. Potential influences on the United Kingdom's floods of winter 2013/14. Nature Clim Change 4, 769–777 (2014). https://doi.org/10.1038/nclimate2314

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing