Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition

Abstract

Landscape fires are key in African ecosystems1,2,3 and the continent is responsible for ·70% of global burned area and ·50% of fire-related carbon emissions4,5. Fires are mostly human ignited, but precipitation patterns govern when and where fires can occur6. The relative role of humans and precipitation in driving the spatio-temporal variability in burned area is not fully disentangled but is required to predict future burned area7,8. Over 2001–2012, observations indicate strong but opposing trends in the African hemispheres4. Here we use satellite data and statistical modelling and show that changes in precipitation, driven by the El Niño/Southern Oscillation (ENSO), which changed from El Niño to La Niña dominance over our study period, contributed substantially (51%) to the upward trend over southern Africa. This also contributed to the downward trend over northern Africa (24%), but here rapid demographic and socio-economic changes were almost as important (20%), mainly due to conversion of savannah into cropland, muting burned area. Given the economic perspective of Africa and the oscillative nature of ENSO, future African savannah burned area will probably decline. Combined with increasing global forest fire activity due to climate change9,10,11, our results indicate a potential shift in global pyrogeography from being savannah dominated to being forest dominated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Annual burned area: mean, recent trends and drivers, for areas with precipitation rates between 400 and 1,500 mm yr−1 based on 2001–2012 data.
Figure 2: Impact of cropland extent on annual burned area.
Figure 3: Pearson’s r between annual burned area anomaly and Multivariate ENSO Index.

Similar content being viewed by others

References

  1. Scholes, R. J. & Archer, S. R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).

    Article  Google Scholar 

  2. Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–537 (2005).

    Article  CAS  Google Scholar 

  3. Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Article  CAS  Google Scholar 

  4. Giglio, L., Randerson, J. T. & van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. 118, 317–328 (2013).

    Article  Google Scholar 

  5. Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  CAS  Google Scholar 

  6. Archibald, S., Roy, D. P., van Wilgen, B. W. & Scholes, R. J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 15, 613–630 (2009).

    Article  Google Scholar 

  7. Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    Article  CAS  Google Scholar 

  8. Kloster, S., Mahowald, N. M., Randerson, J. T. & Lawrence, P. J. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN. Biogeosciences 9, 509–525 (2012).

    Article  Google Scholar 

  9. Kasischke, E. S., Christensen, N. L. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).

    Article  Google Scholar 

  10. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  CAS  Google Scholar 

  11. Malhi, Y., Roberts, J. T., Betts, R. A. & Killeen, T. J. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).

    Article  CAS  Google Scholar 

  12. Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Change Biol. 12, 2023–2031 (2006).

    Article  Google Scholar 

  13. Van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. J. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeochem. Cycles 22, GB3028 (2008).

    Article  Google Scholar 

  14. Nicholson, S. E. & Grist, J. P. The seasonal evolution of the atmospheric circulation over West Africa and Equatorial Africa. J. Clim. 16, 1013–1030 (2003).

    Article  Google Scholar 

  15. Daniau, A-L. et al. Orbital-scale climate forcing of grassland burning in southern Africa. Proc. Natl Acad. Sci. USA 110, 5069–5073 (2013).

    Article  CAS  Google Scholar 

  16. Grégoire, J. M. et al. Effect of land-cover change on Africa’s burnt area. Int. J. Wildl. Fire 22, 107–120 (2013).

    Article  Google Scholar 

  17. Archibald, S., Scholes, R. J., Roy, D. P., Roberts, G. & Boschetti, L. Southern African fire regimes as revealed by remote sensing. Int. J. Wildl. Fire 19, 861–878 (2010).

    Article  Google Scholar 

  18. Shaffer, L. J. Indigenous fire use to manage savanna landscapes in Southern Mozambique. Fire Ecol. 6, 43–59 (2010).

    Article  Google Scholar 

  19. Turner, M. D. The new pastoral development paradigm: Engaging the realities of property institutions and livestock mobility in dryland Africa. Soc. Nature Resour. An. Int. J. 24, 469–484 (2011).

    Article  Google Scholar 

  20. Tiffen, M. Urbanization: Impacts on the evolution of “mixed farming” systems in Sub-Saharan Africa. Exp. Agric. 42, 259–287 (2006).

    Article  Google Scholar 

  21. Roy, D. P. & Boschetti, L. Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products. IEEE Trans. Geosci. Remote Sensing 47, 1032–1044 (2009).

    Article  Google Scholar 

  22. Giglio, L., Loboda, T., Roy, D. P., Quayle, B. & Justice, C. O. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing Environ. 113, 408–420 (2009).

    Article  Google Scholar 

  23. Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article  Google Scholar 

  24. Friedl, M. A. et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing Environ. 83, 287–302 (2002).

    Article  Google Scholar 

  25. Archibald, S., Nickless, A., Govender, N., Scholes, R. J. & Lehsten, V. Climate and the inter-annual variability of fire in southern Africa: A meta-analysis using long-term field data and satellite-derived burnt area data. Glob. Ecol. Biogeogr. 19, 794–809 (2010).

    Article  Google Scholar 

  26. Anyamba, A., Tucker, C. J. & Eastman, J. R. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int. J. Remote Sensing 22, 1847–1859 (2001).

    Article  Google Scholar 

  27. Dai, A. & Wigley, T. M. L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 27, 1283–1286 (2000).

    Article  Google Scholar 

  28. Wolter, K. & Timlin, M. S. Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53, 315–324 (1998).

    Article  Google Scholar 

  29. Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nature Geosci. 1, 697–702 (2008).

    Article  CAS  Google Scholar 

  30. Alexandratos, N. & Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision 147 (Food and Agriculture Organization, 2012).

    Google Scholar 

Download references

Acknowledgements

We would like to thank P. Castellanos and A. Meesters for their helpful suggestions and all data providers and agencies for making their data publicly available. N.A. received financial support from the EU FP7 MACC-II project (contract number 218793) and G.R.v.d.W. is supported by the European Research Council (contract number 280061).

Author information

Authors and Affiliations

Authors

Contributions

N.A. and G.R.v.d.W. designed the research, N.A. conducted the research, and N.A. and G.R.v.d.W. wrote the paper.

Corresponding author

Correspondence to Niels Andela.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andela, N., van der Werf, G. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Clim Change 4, 791–795 (2014). https://doi.org/10.1038/nclimate2313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing