Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean

Abstract

Internal climate variability across a range of scales is known to contribute to regional sea-level trends1,2,3,4,5,6,7, which can be much larger than the global mean sea-level trend in many parts of the globe. Over decadal timescales, this internal variability obscures the long-term sea-level change3,6,8, making it difficult to assess the effect of anthropogenic warming on sea level. Here, an attempt is made to uncover the sea-level rise pattern in the tropical Pacific Ocean associated with anthropogenic warming. More specifically, the sea-level variability associated with the Pacific Decadal Oscillation is estimated and removed from the regional sea-level trends computed from satellite altimetry measurements over the past two decades. The resulting pattern of regional sea-level rise uncovered in the tropical Pacific Ocean is explained in part by warming in the tropical Indian Ocean, which has been attributed to anthropogenic warming9. This study represents one of the first attempts at linking the sea-level trend pattern observed by satellite altimetry to anthropogenic forcing.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pacific Decadal Oscillation (PDO)-related sea-level trends.
Figure 2: Pacific Decadal Oscillation (PDO)-related wind-stress trends.
Figure 3: Sea-level trend data–model comparison.

References

  1. Bromirski, P. D., Miller, A. J., Flick, R. E. & Auad, G. Dynamical suppression of sea level rise along the Pacific coast of North America: Indications for imminent acceleration. J. Geophys. Res. 116, C07005 (2011).

    Article  Google Scholar 

  2. Chambers, D. P., Melhaff, C. A., Urban, T. J., Fuji, D. & Nerem, R. S. Low-frequency variations in global mean sea level: 1950–2000. J. Geophys. Res. 107, 3026 (2002).

    Article  Google Scholar 

  3. Hamlington, B. D., Leben, R. R., Nerem, R. S. & Kim, K-Y. The effect of signal-to-noise ratio on the study of sea level trends. J. Clim. 24, 1396–1408 (2011).

    Article  Google Scholar 

  4. Merrifield, M. A., Thompson, P. R. & Lander, M. Multidecadal sea level anomalies and trends in the western tropical Pacific. Geophys. Res. Lett. 39, L13602 (2012).

    Article  Google Scholar 

  5. Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

    Article  Google Scholar 

  6. Hamlington, B. D., Leben, R. R., Strassburg, M. W., Nerem, R. S. & Kim, K-Y. Contribution of the Pacific decadal oscillation to global mean sea level trends. Geophys. Res. Lett. 40, 5171–5175 (2013).

    Article  Google Scholar 

  7. Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dynam. doi:10.1007/s00382-013-1951-1 (2013).

  8. Calafat, F. M. & Chambers, D. P. Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys. Res. Lett. 40, 3661–3666 (2013).

    Article  Google Scholar 

  9. Du, Y. & Xie, S. P. Role of atmospheric adjustments in the TIO warming during the 20th century in climate models. Geophys. Res. Lett. 35, L08712 (2008).

    Article  Google Scholar 

  10. Hamlington, B. D., Leben, R. R. & Kim, K-Y. Improving sea level reconstructions using non-sea level measurements. J. Geophys. Res. 117, C10025 (2012).

    Article  Google Scholar 

  11. Church, J. A., White, N. J., Coleman, R., Lambeck, K. & Mitrovica, J. X. Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Clim. 17, 2609–2625 (2004).

    Article  Google Scholar 

  12. Hamlington, B. D., Leben, R. R., Nerem, R. S., Han, W. & Kim, K-Y. Reconstruction sea level using cyclostationary empirical orthogonal functions. J. Geophys. Res. 116, C12015 (2011).

    Article  Google Scholar 

  13. Meyssignac, B., Becker, M., Llovel, W. & Cazenave, A. An assessment of two-dimensional past sea level reconstructions over 1950–2009 based on tide-gauge data and different input sea level grids. Surv. Geophys. 33, 945–972 (2012).

    Article  Google Scholar 

  14. Ray, R. D. & Douglas, B. C. Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr. 91, 496–515 (2011).

    Article  Google Scholar 

  15. Hamlington, B. D., Leben, R. R., Strassburg, M. W. & Kim, K-Y. Cyclostationary empirical orthogonal function sea-level reconstruction. Geosci. Data J. 1, 13–19 (2014).

    Article  Google Scholar 

  16. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  17. Mantua, N. J. & Hare, S. R. The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002).

    Article  Google Scholar 

  18. Meyssignac, B., Salas y Melia, D., Becker, M., Llovel, W. & Cazenave, A. Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature? Clim. Past 8, 787–802 (2012).

    Article  Google Scholar 

  19. Cummins, P. F., Lagerloef, G. S. E. & Mitchum, G. A regional index of northeast Pacific variability based on satellite altimeter data. Geophys. Res. Lett. 32, L17607 (2005).

    Article  Google Scholar 

  20. Zhang, X. & Church, J. A. Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett. 39, L21701 (2012).

    Google Scholar 

  21. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  22. Philander, S.G. El Nino, La Nina and the Southern Oscillation (Elsevier, 1990).

    Google Scholar 

  23. Luo, J. J., Sasaki, W. & Matsumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Fox-Kemper and R. Milliff for their comments, discussion and review of the paper. B.D.H. and R.R.L. acknowledge support from NASA ROSES Physical Oceanography grant NNX11AE26G and NASA Ocean Surface Topography Science Team grant NNX13AH05G. R.S.N. acknowledges support from NASA Interdisciplinary Science Grant NNX11AP27G. W.H. is supported by NSF CAREER award OCE 0847605. K-Y.K. acknowledges support by the ‘Ocean Climate Change: Analysis, Projections, Adaptation (OCCAPA)’ funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Contributions

B.D.H. and R.R.L. conceived of the analysis conducted here; B.D.H. performed the analysis and wrote the paper. M.W.S. assisted in performing the data analysis. W.H. conducted the model experiments and assisted in writing the paper. K-Y.K. provided analysis tools. K-Y.K., R.R.L. and R.S.N. assisted in the synthesis and presentation of the results.

Corresponding author

Correspondence to B. D. Hamlington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamlington, B., Strassburg, M., Leben, R. et al. Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean. Nature Clim Change 4, 782–785 (2014). https://doi.org/10.1038/nclimate2307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2307

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing