Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate engineering reconsidered


Stratospheric injection of sulphate aerosols has been advocated as an emergency geoengineering measure to tackle dangerous climate change, or as a stop-gap until atmospheric carbon dioxide levels are reduced. But it may not prove to be the game-changer that some imagine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ecological effects of solar radiation management using sulphate aerosols.



  1. IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. Crutzen, P. J. Climatic Change 77, 211–219 (2006).

    Article  CAS  Google Scholar 

  3. Keith, D. W. A Case for Climate Engineering (Boston Review Books, 2013).

    Book  Google Scholar 

  4. Vaughan, N. E. & Lenton, T. M. Climatic Change 109, 745–790 (2011).

    Article  Google Scholar 

  5. Robock, A. Bull. Atomos. Sci. 64, 14–18 (2008).

    Article  Google Scholar 

  6. Barrett, S. & Dannenberg, A. Proc. Natl Acad. Sci. USA 109, 17372–17376 (2012).

    Article  CAS  Google Scholar 

  7. Irvine, P. J., Sriver, R. L. & Keller, K. Nature Clim. Change 2, 97–100 (2012).

    Article  CAS  Google Scholar 

  8. Pongratz, J., Lobell, D. B., Cao, L. & Caldeira, K. Nature Clim. Change 2, 101–105 (2012).

    Article  CAS  Google Scholar 

  9. Gillett, N. P., Arora, V. K., Zickfeld, K., Marshall, S. J. & Merryfield, W. J. Nature Geosci. 4, 83–87 (2011).

    Article  CAS  Google Scholar 

  10. McCusker, K. E., Battisti, D. S. & Bitz, C. M. J. Clim. 25, 3096–3116 (2012).

    Article  Google Scholar 

  11. Irvine, P. J., Lunt, D. J., Stone, E. J. & Ridgwell, A. Environ. Res. Lett. 4, (2009).

  12. Scheffer, M. et al. Science 338, 344–348 (2012).

    Article  CAS  Google Scholar 

  13. Lenton, T. M. Nature Clim. Change 1, 201–209 (2011).

    Article  Google Scholar 

  14. Seidel, D. J., Feingold, G., Jacobson, A. R. & Loeb, N. Nature Clim.Change 4, 93–98 (2014).

    Article  CAS  Google Scholar 

  15. Rau, G. H., MacLeod, E. L. & Hoegh-Guldberg, O. Nature Clim. Change 2, 720–724 (2012).

    Article  Google Scholar 

  16. Kravitz, B. et al. J. Geophys. Res. Atmos. 118, 8320–8332 (2013).

    Article  Google Scholar 

Download references


The Beijer Institute of Ecological Economics and the Global Economic Dynamics and the Biosphere program, both of the Royal Swedish Academy of Sciences, supported the authors' collaboration.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Scott Barrett.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrett, S., Lenton, T., Millner, A. et al. Climate engineering reconsidered. Nature Clim Change 4, 527–529 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing