Arctic amplification decreases temperature variance in northern mid- to high-latitudes

Abstract

Changes in climate variability are arguably more important for society and ecosystems than changes in mean climate, especially if they translate into altered extremes1,2,3. There is a common perception and growing concern that human-induced climate change will lead to more volatile and extreme weather4. Certain types of extreme weather have increased in frequency and/or severity5,6,7, in part because of a shift in mean climate but also because of changing variability1,2,3,8,9,10. In spite of mean climate warming, an ostensibly large number of high-impact cold extremes have occurred in the Northern Hemisphere mid-latitudes over the past decade11. One explanation is that Arctic amplification—the greater warming of the Arctic compared with lower latitudes12 associated with diminishing sea ice and snow cover—is altering the polar jet stream and increasing temperature variability13,14,15,16. This study shows, however, that subseasonal cold-season temperature variability has significantly decreased over the mid- to high-latitude Northern Hemisphere in recent decades. This is partly because northerly winds and associated cold days are warming more rapidly than southerly winds and warm days, and so Arctic amplification acts to reduce subseasonal temperature variance. Previous hypotheses linking Arctic amplification to increased weather extremes invoke dynamical changes in atmospheric circulation11,13,14,15,16, which are hard to detect in present observations17,18 and highly uncertain in the future19,20. In contrast, decreases in subseasonal cold-season temperature variability, in accordance with the mechanism proposed here, are detectable in the observational record and are highly robust in twenty-first-century climate model simulations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Changing mean temperature and variability.
Figure 2: Influence of wind direction on temperature.
Figure 3: Changing influence of wind direction on temperature.
Figure 4: Modelled future changes in mean temperature and variability.
Figure 5: Modelled future changes in wind-associated temperature anomalies.

References

  1. 1

    Field, C. B. et al. (eds) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (Cambridge Univ. Press, 2012).

  2. 2

    Katz, R. & Brown, B. G. Extreme events in a changing climate: Variability is more important than averages. Climatic Change 21, 289–302 (1992).

    Article  Google Scholar 

  3. 3

    Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).

    Article  Google Scholar 

  4. 4

    Leiserowitz, A., Maibach, E., Roser-Renouf, C., Feinberg, G. & Howe, P. Extreme Weather and Climate Change in the American Mind (Yale Univ. & George Mason Univ., 2012).

    Google Scholar 

  5. 5

    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006).

    Google Scholar 

  6. 6

    Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. 118, 2098–2118 (2013).

    Google Scholar 

  7. 7

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, 14726–14727 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Donat, M. G. & Alexander, L. V. The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett. 39, L14707 (2012).

    Article  Google Scholar 

  11. 11

    Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A. & Cherry, J. E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 7, 014007 (2012).

    Article  Google Scholar 

  12. 12

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    Article  Google Scholar 

  14. 14

    Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA 109, 4074–4079 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Tang, Q., Zhang, X., Yang, X. & Francis, J. A. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ. Res. Lett. 8, 014036 (2013).

    Article  Google Scholar 

  16. 16

    Overland, J. E., Wood, K. R. & Wang, M. Warm Arctic-cold continents: Impacts of the newly open Arctic Sea. Polar Res. 30, 15787 (2011).

    Article  Google Scholar 

  17. 17

    Screen, J. A. & Simmonds, I. Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett. 40, 959–964 (2013).

    Article  Google Scholar 

  18. 18

    Barnes, E. A. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett. 40, 4728–4733 (2013).

    Article  Google Scholar 

  19. 19

    Barnes, E. A. & Polvani, L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Clim. 26, 7177–7135 (2013).

    Article  Google Scholar 

  20. 20

    Cattiaux, J. & Cassou, C. Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences. Geophys. Res. Lett. 40, 3682–3687 (2013).

    Article  Google Scholar 

  21. 21

    Holland, M. M. & Bitz, C. M. Polar amplification of climate change in coupled models. Clim. Dynam. 21, 221–232 (2003).

    Article  Google Scholar 

  22. 22

    Kharin, V. V., Zwiers, F. W., Zhang, X. & Hegerl, G. C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20, 1419–1444 (2007).

    Article  Google Scholar 

  23. 23

    Ylhäisi, J. S. & Räisänen, J. Twenty-first century changes in daily temperature variability in CMIP3 climate models. Int. J. Climatol. 34, 1414–1428 (2014).

    Article  Google Scholar 

  24. 24

    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change 119, 345–357 (2013).

    Article  Google Scholar 

  25. 25

    Kjellström, E. et al. Modelling daily temperature extremes: Recent climate and future changes over Europe. Climatic Change 81, 249–265 (2007).

    Article  Google Scholar 

  26. 26

    Fischer, E. M., Lawrence, D. M. & Sanderson, B. M. Quantifying uncertainties in projections of extremes—a perturbed land surface parameter experiment. Clim. Dynam. 37, 1381–1398 (2011).

    Article  Google Scholar 

  27. 27

    Gregory, J. M. & Mitchell, J. F. B. Simulation of daily variability of surface temperature and precipitation over Europe in the current and 2 × CO2 climates using the UKMO climate model. Q. J. R. Meteorol. Soc. 121, 1451–1476 (1995).

    Google Scholar 

  28. 28

    De Vries, H., Haarsma, R. J. & Hazeleger, W. Western European cold spells in current and future climate. Geophys. Res. Lett. 39, L04706 (2012).

    Article  Google Scholar 

  29. 29

    Fischer, E. M., Rajczak, J. & Schär, C. Changes in European summer temperature variability revisited. Geophys. Res. Lett. 39, L19702 (2012).

    Google Scholar 

  30. 30

    Serreze, M. C., Barrett, A. & Cassano, J. C. Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J. Geophys. Res. 116, D07104 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The ERA-Interim reanalysis was produced and provided by the European Centre for Medium-range Weather Forecasts; and the HadGHCND data set by the UK Met Office Hadley Centre. The author acknowledges the World Climate Research Programme, which is responsible for the CMIP5 multi-model ensemble, and the modelling groups for producing and making available their model output. C. Huntingford is thanked for commenting on an earlier version of the manuscript; and C. Deser and L. Sun for useful discussions. This research was financially supported by the UK Natural Environment Research Council grant NE/J019585/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James A. Screen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Screen, J. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Clim Change 4, 577–582 (2014). https://doi.org/10.1038/nclimate2268

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing