Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of land surface air temperature trend



The global climate has been experiencing significant warming at an unprecedented pace in the past century1,2. This warming is spatially and temporally non-uniform, and one needs to understand its evolution to better evaluate its potential societal and economic impact. Here, the evolution of global land surface air temperature trend in the past century is diagnosed using the spatial–temporally multidimensional ensemble empirical mode decomposition method3. We find that the noticeable warming (>0.5 K) started sporadically over the global land and accelerated until around 1980. Both the warming rate and spatial structure have changed little since. The fastest warming in recent decades (>0.4 K per decade) occurred in northern mid-latitudes. From a zonal average perspective, noticeable warming (>0.2 K since 1900) first took place in the subtropical and subpolar regions of the Northern Hemisphere, followed by subtropical warming in the Southern Hemisphere. The two bands of warming in the Northern Hemisphere expanded from 1950 to 1985 and merged to cover the entire Northern Hemisphere.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spatial evolution of the ensemble empirical mode decomposition trend of global land surface air temperature.
Figure 2: Warming rate of global land surface air temperature.
Figure 3: Evolution of the zonally averaged trend of surface air temperature.


  1. IPCC Climate Change 2007: The Physical Science Basis (eds Soloman, S. et. al) (Cambridge Univ. Press, 2007).

  2. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et. al) (Cambridge Univ. Press, 2013).

  3. Wu, Z., Huang, N. E. & Chen, X. The multi-dimensional ensemble empirical mode decomposition method. Adv. Adapt. Data Anal. 1, 339–372 (2009).

    Article  Google Scholar 

  4. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 ( 2010).

    Article  Google Scholar 

  5. Lawrimore, J. H. et al. An overview of the global historical climatology network monthly mean temperature data set, version 3. J. Geophys. Res. 116, D19121 (2011).

    Article  Google Scholar 

  6. Wu, Z., Huang, N. E., Long, S. R. & Peng, C-K. On the trend, detrending and variability of nonlinear and non-stationary time series. Proc. Natl Acad. Sci. USA 104, 14889–14894 (2007).

    CAS  Article  Google Scholar 

  7. Huang, N. E. et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc. R. Soc. Lond. A. 454, 903–995 (1998).

    Article  Google Scholar 

  8. Huang, N. E. & Wu, Z. A review on Hilbert–Huang transform: The method and its applications on geophysical studies. Rev. Geophys. 46, RG2006 (2008).

    Article  Google Scholar 

  9. Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Atmos. Sci. 1, 1–41 (2009).

    Google Scholar 

  10. Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dynam. 37, 759–773 (2011).

    Article  Google Scholar 

  11. Franzke, C. Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trends analysis. Nonlinear Proc. Geoph. 16, 65–76 (2009).

    Article  Google Scholar 

  12. Ruzmaikin, A. & Feynman, J. Search for climate trends in satellite data. Adv. Adapt. Data Anal. 1, 667–679 (2009).

    Article  Google Scholar 

  13. Qian, C., Wu, Z., Fu, C. B. & Zhou, T. J. On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Adv. Atmos. Sci. 27, 1169–1182 (2010).

    Article  Google Scholar 

  14. Vecchio, A. & Carbone, V. Amplitude–frequency fluctuations of the seasonal cycle, temperature anomalies, and long-range persistence of climate records. Phys. Rev. E. 82, 066101 (2010).

    CAS  Article  Google Scholar 

  15. Franzke, C. & Woollings, T. On the persistence and predictability properties of North Atlantic climate variability. J. Clim. 24, 466–472 (2011).

    Article  Google Scholar 

  16. Fu, C., Qian, C. & Wu, Z. Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach. Sci. China Earth Sci. 54, 1400–1406 (2011).

    Article  Google Scholar 

  17. Hu, Z. Z., Huang, B., Kinter, J. L. III, Wu, Z. & Kumar, A. Connection of the stratospheric QBO with global atmospheric general circulation and tropical SST Part II: Interdecadal variations. Clim. Dynam. 38, 25–43 (2012).

    CAS  Article  Google Scholar 

  18. Huang, B. et al. Influences of subtropical air–sea interaction on the multidecadal AMOC variability in the NCEP climate forecast system. Clim. Dynam. 39, 631–555 (2012).

    Google Scholar 

  19. Zhu, J., Huang, B. & Wu, Z. The role of ocean dynamics in the interaction between the Atlantic meridional and equatorial modes. J. Clim. 25, 3583–3598 (2012).

    Article  Google Scholar 

  20. Misra, V., Li, H., Wu, Z. H. & DiNapoli, S. Global seasonal climate predictability in a two tiered forecast system: Part I: Boreal summer and fall seasons. Clim. Dynam. 42, 1425–1448 (2014).

    Article  Google Scholar 

  21. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

  22. Semenov, V. A. et al. The impact of North Atlantic–Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Clim. 23, 5668–5677 (2010).

    Article  Google Scholar 

  23. DelSole, T., Tippett, M. K. & Shukla, J. A significant component of unforced multidecadal variability in the recent acceleration of global warming. J. Clim. 24, 909–926 (2011).

    Article  Google Scholar 

  24. Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    CAS  Article  Google Scholar 

  25. Tung, K. K. & Zhou, J. Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl Acad. Sci. USA 110, 2058–2063 (2013).

    CAS  Article  Google Scholar 

  26. Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).

    Article  Google Scholar 

  27. Hudson, R. D., Andrade, M. F., Follette, M. B. & Frolov, A. D. The total ozone field separated into meteorological regimes–Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos. Chem. Phys. 6, 5183–5191 (2006).

    CAS  Article  Google Scholar 

  28. Hu, Y. & Fu, Q. Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. 7, 5229–5236 (2007).

    CAS  Article  Google Scholar 

  29. Seidel, D. J., Fu, Q., RanDel, W. J. & Reichler, T. J. Widening of the tropical belt in a changing climate. Nature Geosci. 1, 21–24 (2008).

    CAS  Article  Google Scholar 

  30. Huang, J., Guan, X. & Ji, F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 12, 5391–5398 (2012).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Basic Research Program of China 2012CB955301 (F.J. and J.H.) as well as the US National Science Foundation program AGS-1139479 (Z.W. and F.J.).

Author information

Authors and Affiliations



All authors contributed to shaping up the ideas and writing the paper. The analyses were carried out by F.J. and Z.W., with various analysis methods designed by Z.W., F.J. and Z.W. are co-first authors.

Corresponding author

Correspondence to Zhaohua Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ji, F., Wu, Z., Huang, J. et al. Evolution of land surface air temperature trend. Nature Clim Change 4, 462–466 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing