Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oyster reefs can outpace sea-level rise


In the high-salinity seaward portions of estuaries, oysters seek refuge from predation, competition and disease in intertidal areas1,2, but this sanctuary will be lost if vertical reef accretion cannot keep pace with sea-level rise (SLR). Oyster-reef abundance has already declined 85% globally over the past 100 years, mainly from over harvesting3,4, making any additional losses due to SLR cause for concern. Before any assessment of reef response to accelerated SLR can be made, direct measures of reef growth are necessary. Here, we present direct measurements of intertidal oyster-reef growth from cores and terrestrial lidar-derived digital elevation models. On the basis of our measurements collected within a mid-Atlantic estuary over a 15-year period, we developed a globally testable empirical model of intertidal oyster-reef accretion. We show that previous estimates of vertical reef growth, based on radiocarbon dates and bathymetric maps5,6, may be greater than one order of magnitude too slow. The intertidal reefs we studied should be able to keep up with any future accelerated rate of SLR (ref. 7) and may even benefit from the additional subaqueous space allowing extended vertical accretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oyster-reef compositional changes with depth.
Figure 2: Oyster-reef growth through time.
Figure 3: Transects A–A′ and B–B′ across the reefs at different growth stages.

Similar content being viewed by others


  1. White, M. E. & Wilson, E. A. in The Eastern Oyster: Crassostrea virginica (eds Kennedy, V. S., Newell, R. I. E. & Eble, A. F.) Ch. 16, 559–579 (Maryland Sea Grant, 1996).

    Google Scholar 

  2. Bahr, L. M. & Lanier, W. P. The ecology of intertidal oyster reefs in the South Atlantic: A community profile. 105 (US Fish and Wildlife Service, Office of Biological Services 1981).

  3. Kirby, M. X. Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins. Proc. Natl Acad. Sci. USA 101, 13096–13099 (2004).

    Article  CAS  Google Scholar 

  4. Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116 (2011).

    Article  Google Scholar 

  5. DeAlteris, J. T. The geomorphic development of wreck shoal, a subtidal oyster reef of the James River, Virginia. Estuaries 11, 240–249 (1988).

    Article  Google Scholar 

  6. Wang, H. & Van Strydonck, M. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China. Quat. Res. 47, 192–205 (1997).

    Article  Google Scholar 

  7. Rahmstorf, S. A new view on sea level rise. Nature Rep. Clim. Change 44–45 (2010).

  8. Dame, R. F., Spurrier, J. D. & Wolaver, T. G. Carbon, Nitrogen and Phosphorus processing by an oyster reef. Mar. Ecol. Prog. Ser. 54, 249–256 (1989).

    Article  Google Scholar 

  9. Grabowski, J. H. & Peterson, C. H. in Ecosystem Engineers: Concepts, Theory and Applications (eds Cuddington, K., Beyers, J. E., Wilson, W. G. & Hastings, A.) 281–298 (Elsevier-Academic, 2007).

    Google Scholar 

  10. Tolley, S. G. & Volety, A. K. The role of oysters in habitat use of oyster reefs by resident fishes and decapod crustaceans. J. Shellfish Res. 24, 1007–1012 (2005).

    Article  Google Scholar 

  11. Meyer, D. L., Townsend, E. C. & Thayer, G. W. Stabilization and erosion control value of oyster cultch for intertidal marsh. Restor. Ecol. 5, 93–99 (1997).

    Article  Google Scholar 

  12. Piazza, B. P., Banks, P. D. & La Peyre, M. K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restorat. Ecol. 13, 499–506 (2005).

    Article  Google Scholar 

  13. Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Ann. Rev. Mar. Sci. 6, 221–247 (2014).

    Article  Google Scholar 

  14. Bishop, M. & Peterson, C. Direct effects of physical stress can be counteracted by indirect benefits: Oyster growth on a tidal elevation gradient. Oecologia 147, 426–433 (2006).

    Article  Google Scholar 

  15. Powers, S. P., Peterson, C. H., Grabowski, J. H. & Lenihan, H. S. Success of constructed oyster reefs in no-harvest sanctuaries: Implications for restoration. Mar. Ecol. Prog. Ser. 389, 159–170 (2009).

    Article  Google Scholar 

  16. Mann, R., Harding, J. M. & Southworth, M. J. Reconstructing pre-colonial oyster demographics in the Chesapeake Bay, USA. Estuar. Coast. Shelf Sci. 85, 217–222 (2009).

    Article  Google Scholar 

  17. Powell, E. N., Klinck, J. M., Ashton-Alcox, K., Hofmann, E. E. & Morson, J. The rise and fall of Crassostrea virginica oyster reefs: The role of disease and fishing in their demise and a vignette on their management. J. Mar. Res. 70, 505–558 (2012).

    Article  Google Scholar 

  18. Grabowski, J. H., Hughes, A. R., Kimbro, D. L. & Dolan, M. A. How habitat setting influences restored oyster reef communities. Ecology 86, 1926–1935 (2005).

    Article  Google Scholar 

  19. Hargis, W. J. & Haven, D. S. in Chesapeake Oyster Reefs, their Importance, Destruction and Guidelines for Restoring them (eds Luckenback, M. W., Mann, R. & Wesson, J. A.) 329–358 (Virginia Institute of Marine Sciences Press, 1999).

    Google Scholar 

  20. Ortega, S. & Sutherland, J. P. Recruitment and growth of the Eastern Oyster, Crassostrea virginica, in North Carolina. Estuaries 15, 158–170 (1992).

    Article  Google Scholar 

  21. Thomsen, M. S. & McGlathery, K. Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. J. Exp. Mar. Biol. Ecol. 328, 22–34 (2006).

    Article  Google Scholar 

  22. Davies, D. J., Powell, E. N. & Stanton, R. J. Relative rates of shell dissolution and net sediment accumulation–a commentary: Can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22, 207–212 (1989).

    Article  Google Scholar 

  23. Hess, K. W., Spargo, E. A., Wong, A., White, S. A. & Gill, S. VDATUM for Central Coastal North Carolina: Tidal Datums, Marine Grids, and Sea Surface Topography 46 (NOAA, Silver Spring, 2005).

    Google Scholar 

  24. Delaune, R. D., Patrick Jr, W. H. & Buresh, R. J. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 275, 532–533 (1978).

    Article  CAS  Google Scholar 

  25. Gunnell, J. R., Rodriguez, A. B. & McKee, B. A. How a marsh is built from the bottom up. Geology 41, 859–862 (2013).

    Article  Google Scholar 

  26. Bos, A. R., Bouma, T. J., de Kort, G. L. J. & van Katwijk, M. M. Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification. Estuar. Coast. Shelf Sci. 74, 344–348 (2007).

    Article  Google Scholar 

  27. Palinkas, C. & Koch, E. Sediment accumulation rates and submersed aquatic vegetation (SAV) distributions in the Mesohaline Chesapeake Bay, USA. Estuar. Coasts. 35, 1416–1431 (2012).

    Article  CAS  Google Scholar 

  28. Breithaupt, J. L., Smoak, J. M., Smith, T. J., Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Glob. Biogeochem. Cycles 26, GB3011 (2012).

    Article  Google Scholar 

  29. Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009).

    Article  CAS  Google Scholar 

  30. Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909 (2012).

    Article  Google Scholar 

Download references


We thank A. Poray, A. Tyler, N. Anderson, E. Voigt, C. Baillie, G. Safrit, J. Hancock, S. Fuller and the NC Division of Marine Fisheries (C. Hardy, M. Jordan and G. Hardin) for assistance in constructing experimental reefs and P. Rodriguez for processing cores. This research was supported by funding from the Albemarle-Pamlico National Estuary Program to N.L.L., F.J.F. and A.B.R., North Carolina Sea Grant to A.B.R. and F.J.F., North Carolina Marine Resources Fund (CRFL) to A.B.R., NOAA-NERRS Graduate Research Fellowship Program (NOAA award Number 97-040-NOC) to J.H.G., the North Carolina Fishery Resource Grant Program (FRG Project Number 97-EP-06 and 98-EP-16) to J.H.G., and the National Science Foundation (OCE-1155628) to F.J.F. and (OCE-1203859) to J.H.G.

Author information

Authors and Affiliations



A.B.R., F.J.F., J.H.G. and N.L.L. conceived of the project. A.B.R., F.J.F., J.T.R., E.J.T. and S.E.C. collected field data. A.B.R., J.T.R. and S.E.C. processed data. A.B.R. wrote the article. All authors constructed experimental reefs, contributed to discussions and interpretations of the results, and edited the manuscript.

Corresponding author

Correspondence to Antonio B. Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, A., Fodrie, F., Ridge, J. et al. Oyster reefs can outpace sea-level rise. Nature Clim Change 4, 493–497 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing