Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

Abstract

Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs 1, 2) and increase CO2 emissions3 because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil4,5. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs 6, 7, 8). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model9,10,11, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance12,13,14, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha1 yr1 over five to ten years could decrease regional net SOC by an average of 0.47–0.66 Mg C ha1 yr1. These emissions add an average of 50–70 g CO2 per megajoule of biofuel (range 30–90) and are insensitive to the fraction of residue removed. Unless lost C is replaced15,16, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Modelled soil organic carbon decrease due to removal of 6 Mg corn residue per hectare per year over nine years compared with no removal under irrigated continuous corn.
Figure 2: Modelled soil organic carbon respiration to CO2 in the US Corn Belt from corn residue removal.
Figure 3: Contribution of modelled CO2 emissions from SOC to the life cycle of biofuel from corn residue.

References

  1. Wilhelm, W. W., Johnson, J. M. F., Karlen, D. L. & Lightle, D. T. Corn stover to sustain soil organic carbon further constrains biomass supply. Agronomy J. 99, 1665–1667 (2007).

    Article  CAS  Google Scholar 

  2. Anderson-Teixeira, K. J., Davis, S. C., Masters, M. D. & DeLucia, E. H. Changes in soil organic carbon under biofuel crops. GCB Bioenergy 1, 75–96 (2009).

    Article  CAS  Google Scholar 

  3. Kochsiek, A. E. & Knops, M. H. Maize cellulosic biofuels: Soil carbon loss can be a hidden cost of residue removal. GCB Bioenergy 4, 299–233 (2012).

    Article  Google Scholar 

  4. Kutsch, W. L., Bahn, M. & Heinemeyer, A. Soil Carbon Dynamics: An Integrated Methodology (Cambridge Univ. Press, 2009).

    Google Scholar 

  5. Conant, R. T. et al. Temperature and soil organic matter decomposition rates–Synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).

    Article  Google Scholar 

  6. Sheehan, J. et al. Energy and environmental aspects of using corn stover for fuel ethanol. J. Indust. Ecol. 7, 117–146 (2004).

    Article  Google Scholar 

  7. Spatari, S. & MacLean, H. L. Characterizing model uncertainties in the life cycle of lignocellulose-based ethanol fuels. Environ. Sci. Tech. 44, 8773–8780 (2010).

    Article  CAS  Google Scholar 

  8. Liska, A.J. in Sustainable Biofuels: An Ecological Assessment of Future Energy (eds Bhardwaj A. K., Zenone T. & Chen J. K.) (Walter De Gruyter, in the press)

  9. Yang, H. S. & Janssen, B. H. A mono-component model of carbon mineralization with a dynamic rate constant. Eur. J. Soil Sci. 51, 517–529 (2000).

    Article  Google Scholar 

  10. Yang, H. S. & Janssen, B. H. Relationship between substrate initial reactivity and residues ageing speed in carbon mineralization. Plant Soil 239, 215–224 (2002).

    Article  CAS  Google Scholar 

  11. Vleeshouwers, L. M. & Verhagen, A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Glob. Change Biol. 8, 519–530 (2002).

    Article  Google Scholar 

  12. Verma, S. B. et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agr. For. Metereol. 131, 77–96 (2005).

    Article  Google Scholar 

  13. Suyker, A. E. & Verma, S. B. Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize–soybean cropping systems and water productivity. Agr. For. Metereol. 150, 553–563 (2010).

    Article  Google Scholar 

  14. Kochsiek, A. E., Knops, J. M. H., Brassil, C. E. & Arkebauer, T. J. Maize and soybean litter-carbon pool dynamics in three no-till systems. Soil Sci. Soc. Am. J. 77, 226–236 (2012).

    Article  Google Scholar 

  15. Fronning, B. E, Thelen, K. D & Min, D. Use of manure, compost, and cover crops to supplant crop residue carbon in corn stover removed cropping systems. Agronomy J. 100, 1703–1710 (2008).

    Article  Google Scholar 

  16. Blanco-Canqui, H. Crop residue removal for bioenergy reduces soil carbon pools: How can we offset carbon losses? BioEnergy Res. 6, 358–371 (2013).

    Article  CAS  Google Scholar 

  17. Panoutsou, C., Bauen, A. & Duffield, J. Policy regimes and funding schemes to support investment for next-generation biofuels in the USA and the EU-27. Biofuel Bioprod. Bioref. 7, 685–701 (2013).

    Article  CAS  Google Scholar 

  18. Solomon, B. D., Barnes, J. R. & Halvorsen, K. E. Grain and cellulosic ethanol: History, economics, and energy policy. Biomass Bioenergy 31, 416–425 (2007).

    Article  Google Scholar 

  19. Brown, T. R. & Brown, R. C. A review of cellulosic biofuel commercial-scale projects in the United States. Biofuel Bioprod. Bioref. 7, 235–245 (2013).

    Article  CAS  Google Scholar 

  20. Cherubini, F. & Strømman, A. H. Production of biofuels and biochemicals from lignocellulosic biomass: Estimation of maximum theoretical yields and efficiencies using matrix algebra. Energy Fuel 24, 2657–2666 (2010).

    Article  CAS  Google Scholar 

  21. Kim, S., Dale, B. E. & Jenkins, R. Life cycle assessment of corn grain and corn stover in the United States. Int. J. Life Cycle Assess. 14, 160–174 (2009).

    Article  CAS  Google Scholar 

  22. Gramig, B. M., Reeling, C. J., Cibin, R. & Chaubey, I. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy. Envir. Sci. Tech. 47, 1784–1791 (2013).

    Article  CAS  Google Scholar 

  23. Liska, A. J. & Perrin, R. K. Indirect land use emissions in the life cycle of biofuels: Regulations versus science. Biofuel Bioprod. Bioref. 3, 318–328 (2009).

    Article  CAS  Google Scholar 

  24. Cherubini, F. & Ulgiati, S. Crop residues as raw materials for biorefinery systems—A LCA case study. Appl. Energy 87, 47–57 (2010).

    Article  CAS  Google Scholar 

  25. Wortmann, C. S. et al. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agronomy J. 102, 319–326 (2010).

    Article  CAS  Google Scholar 

  26. Hudiburg, T. W., Law, B. E., Wirth, C. & Luyssaert, S. Regional carbon dioxide implications of forest bioenergy production. Nature Clim. Change 1, 419–423 (2011).

    Article  CAS  Google Scholar 

  27. National Resources Conservation Service, National Resources Inventory, 2007 Annual NRI, Soil Erosion on Cropland. (US Department of Agriculture, 2010).

  28. Clapp, C. E., Allmaras, R. R., Layese, M. F., Linden, D. R. & Dowdy, R. H. Soil organic carbon and 13C abundance as related to tillage, crop residue and nitrogen fertilization under continuous corn management in Minnesota. Soil Till. Res. 55, 127–142 (2000).

    Article  Google Scholar 

  29. Karlen, D. L et al. Crop residue effects on soil quality following 10-years of no-till corn. Soil Till. Res. 31, 149–167 (1994).

    Article  Google Scholar 

  30. Falloon, P. & Smith, P. in Soil Carbon Dynamics: An Integrated Methodology (eds Kutsch, W. L., Bahn, M. & Heinemeyer, A.) 221–244 (Cambridge Univ. Press, 2009).

    Google Scholar 

  31. Smith, W. N. et al. Crop residue removal effects on soil carbon: Measured and inter-model comparisons. Agr. Ecosyst. Environ. 161, 27–38 (2012).

    Article  Google Scholar 

  32. Biscoe, P. V., Scott, R. K. & Monteith, J. L. Barley and its environment. III. Carbon budget of the stand. J. Appl. Ecol. 12, 269–293 (1975).

    Article  CAS  Google Scholar 

  33. Johnson, J. M. F., Allmaras, R. R. & Reicosky, D. C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agronomy. J. 98, 622–636 (2006).

    Article  CAS  Google Scholar 

  34. Kazi, F. K. et al. Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89, S20–S28 (2010).

    Article  CAS  Google Scholar 

  35. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  36. Liska, A. J. & Heier, C.D. The limits to complexity: A thermodynamic history of bioenergy. Biofuel Bioprod. Bioref. 7, 573–581 (2013).

    Article  CAS  Google Scholar 

  37. Blanco-Canqui, H. Energy crops and their implications on soil and environment. Agronomy. J. 102, 403–419 (2010).

    Article  CAS  Google Scholar 

  38. Tilman, D. et al. Beneficial biofuels—the food, energy, and environment trilemma. Science 325, 270–271 (2009).

    Article  CAS  Google Scholar 

  39. Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the US Department of Energy (DE-EE0003149) and the Agricultural Research Division of the University of Nebraska and made use of the Holland Computing Center of the University of Nebraska-Lincoln.

Author information

Authors and Affiliations

Authors

Contributions

A.J.L., H.Y., M.M. and S.G. designed the research; A.J.L., H.Y., M.M., S.G. H.Z., M.P.P., X.X.F. and A.E.S. performed the research; A.J.L., H.Y., M.M., S.G., H.Z., M.P.P., X.X.F. and A.E.S. analyzed the data; and A.J.L., H.Y., M.M., H.B.-C., and A.E.S. wrote the paper.

Corresponding author

Correspondence to Adam J. Liska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liska, A., Yang, H., Milner, M. et al. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nature Clim Change 4, 398–401 (2014). https://doi.org/10.1038/nclimate2187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing