Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2

Abstract

Carbon dioxide is the main greenhouse gas inducing climate change. Increased global CO2 emissions, estimated at 8.4 Pg C yr1 at present, have accelerated from 1% yr1 during 1990–1999 to 2.5% yr1 during 2000–2009 (ref. 1). The carbon balance of terrestrial ecosystems is the greatest unknown in the global C budget because the actual magnitude, location and causes of terrestrial sinks are uncertain2; estimates of terrestrial C uptake, therefore, are often based on the residuals between direct measurements of the atmospheric sink and well-constrained models of ocean uptake of CO2 (ref. 3). Here we report significant terrestrial C accumulation caused by CO2 enhancement to net ecosystem productivity in an intact, undisturbed arid ecosystem4,5,6,7,8 following ten years of exposure to elevated atmospheric CO2. Results provide direct evidence that CO2 fertilization substantially increases ecosystem C storage and that arid ecosystems are significant, previously unrecognized, sinks for atmospheric CO2 that must be accounted for in efforts to constrain terrestrial and global C cycles.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Ecosystem C and N under ambient and elevated CO2.
Figure 2: Ecosystem C and N isotope composition under ambient and elevated CO2.

References

  1. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    CAS  Article  Google Scholar 

  2. Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    CAS  Article  Google Scholar 

  3. Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03 (2009).

    Article  Google Scholar 

  4. Billings, S. A., Schaeffer, S. M. & Evans, R. D. Trace N gas losses and N mineralization in Mojave Desert soils exposed to elevated CO2 . Soil Biol. Biochem. 34, 1777–1784 (2002).

    CAS  Article  Google Scholar 

  5. Housman, D. C. et al. Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems 9, 374–385 (2006).

    Article  Google Scholar 

  6. Ferguson, S. D. & Nowak, R. S. Transitory effects of elevated atmospheric CO2 on fine root dynamics in an arid ecosystem do not increase long-term soil carbon input from fine root litter. New Phytol. 190, 953–967 (2011).

    Article  Google Scholar 

  7. Billings, S. A., Schaeffer, S. M. & Evans, R. D. Soil microbial activity and N availability with elevated CO2 in Mojave Desert soils. Glob. Biogeochem. Cycles 18, GB1011 (2004).

    Article  Google Scholar 

  8. Jin, V. L. & Evans, R. D. Microbial 13C utilization patterns via stable isotope probing of phospholipid biomarkers in Mojave Desert soils exposed to ambient and elevated atmospheric CO2 . Glob. Change Biol. 16, 2334–2344 (2010).

    Article  Google Scholar 

  9. Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manage. 33, 528–544 (2004).

    Article  Google Scholar 

  10. Jobbagy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article  Google Scholar 

  11. Smith, S. D., Monson, R. K. & Anderson, J. E. Physiological Ecology of North American Desert Plants (Springer, 1997).

    Book  Google Scholar 

  12. Jastrow, J. D. et al. Elevated atmospheric carbon dioxide increases soil carbon. Glob. Change Biol. 11, 2057–2064 (2005).

    Article  Google Scholar 

  13. Schlesinger, W. H., Belnap, J. & Marion, G. On carbon sequestration in desert ecosystems. Glob. Change Biol. 15, 1488–1490 (2009).

    Article  Google Scholar 

  14. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. CO2 fertilisation has increased maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    CAS  Article  Google Scholar 

  15. Van Vuuren, D. P. et al. The representative concentration pathways: An overview. Climatic Change 109, 5–31 (2011).

    Article  Google Scholar 

  16. Huenneke, L. & Schlesinger, W. H. in Structure and Function of a Chihuahuan Desert Ecosystem. The Jornada Basin Long-Term Ecological Research Site (eds Havstad, K. M., Huenneke, L. & Schlesinger, William H.) 232–246 (Oxford Univ. Press, 2006).

    Google Scholar 

  17. Clark, N. M., Apple, M. E. & Nowak, R. S. The effects of elevated CO2 on root respiration rates of two Mojave Desert shrubs. Glob. Change Biol. 16, 1566–1575 (2010).

    Article  Google Scholar 

  18. Cheng, W. X. & Johnson, D. W. Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202, 167–174 (1998).

    CAS  Article  Google Scholar 

  19. Hungate, B. A., Chapin, F. S., Zhong, H., Holland, E. A. & Field, C. B. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia 109, 149–153 (1997).

    Article  Google Scholar 

  20. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

    Article  Google Scholar 

  21. Pendall, E., Mosier, A. R. & Morgan, J. A. Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol. 162, 447–458 (2004).

    Article  Google Scholar 

  22. Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geosci. 5, 459–462 (2012).

    CAS  Article  Google Scholar 

  23. Schaeffer, S. M., Billings, S. A. & Evans, R. D. Laboratory incubations reveal potential responses of soil nitrogen cycling to changes in soil C and N availability in Mojave Desert soils exposed to elevated atmospheric CO2 . Glob. Change Biol. 13, 854–865 (2007).

    Article  Google Scholar 

  24. Hunter, R. B., Romney, E. M. & Wallace, A. Nitrate distribution in Mojave Desert soils. Soil Science 134, 22–30 (1982).

    CAS  Article  Google Scholar 

  25. Hartle, R. T., Fernandez, G. C. J. & Nowak, R. S. Horizontal and vertical zones of influence for root systems of four Mojave Desert shrubs. J. Arid Environ. 64, 586–603 (2006).

    Article  Google Scholar 

  26. Evans, R.D. & Ehleringer, J. Water and nitrogen dynamics in an arid woodland. Oecologia 99, 233–242 (1994).

    CAS  Article  Google Scholar 

  27. Schaeffer, S. M., Billings, S. A. & Evans, R. D. Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134, 547–553 (2003).

    CAS  Article  Google Scholar 

  28. McCalley, C. K. & Sparks, J. P. Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156, 871–881 (2008).

    Article  Google Scholar 

  29. Jin, V. L., Schaeffer, S. M., Ziegler, S. E. & Evans, R. D. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2 . J. Geophys. Res. 116, G02001 (2011).

    Google Scholar 

  30. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2 . Glob. Change Biol. 19, 45–63 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge grant support from the Department of Energy’s Terrestrial Carbon Processes Program (DE-FG02-03ER63650, DEFG02-03ER63651) and the NSF Ecosystem Studies Program (DEB-98-14358 and 02-12819). We also acknowledge the DOE’s National Nuclear Security Administration for providing utility services and undisturbed land at the Nevada National Security Site (formerly Nevada Test Site) to conduct the FACE experiment. We also thank S. Chung at WSU for advice on current emission inventories.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and R.N. conceived the study. R.E., S.S., R.N., T.C., B.N. and L.F. designed the final harvest. R.E. and A.K. collected soils data, S.S., T.C. and B.N. collected aboveground plant data and R.N. collected belowground plant data. L.F. and T.C. determined plot area and species composition. B.H. provided elemental and isotopic analyses, and D.S. and K.O. analysed the data. All authors wrote the paper.

Corresponding author

Correspondence to R. D. Evans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evans, R., Koyama, A., Sonderegger, D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nature Clim Change 4, 394–397 (2014). https://doi.org/10.1038/nclimate2184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2184

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing