Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rate of sea-level rise


Present-day sea-level rise is a major indicator of climate change1. Since the early 1990s, sea level rose at a mean rate of 3.1 mm yr−1 (refs 2, 3). However, over the last decade a slowdown of this rate, of about 30%, has been recorded4,5,6,7,8. It coincides with a plateau in Earth’s mean surface temperature evolution, known as the recent pause in warming1,9,10,11,12. Here we present an analysis based on sea-level data from the altimetry record of the past 20 years that separates interannual natural variability in sea level from the longer-term change probably related to anthropogenic global warming. The most prominent signature in the global mean sea level interannual variability is caused by El Niño–Southern Oscillation, through its impact on the global water cycle13,14,15,16. We find that when correcting for interannual variability, the past decade’s slowdown of the global mean sea level disappears, leading to a similar rate of sea-level rise (of 3.3 ± 0.4 mm yr−1) during the first and second decade of the altimetry era. Our results confirm the need for quantifying and further removing from the climate records the short-term natural climate variability if one wants to extract the global warming signal10.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: GMSL trends during the 1994–2002 and 2003–2011 periods.
Figure 2: GMSL rate over five-year-long moving windows.
Figure 3: Detrended GMSL, interannual mass and ‘mass plus thermosteric’ components.


  1. IPCC, Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. Nerem, R. S., Chambers, D. P., Choe, C. & Mitchum, G. T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geodesy 33, 435–446 (2010).

    Article  Google Scholar 

  3. Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surveys Geophys. 32, 585–602 (2011).

    Article  Google Scholar 

  4. Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally averaged sea level budget on seasonal to interannual time scales. J. Geophys. Res. 10.1029/2007jc004517 (2008).

  5. Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

    Article  Google Scholar 

  6. Leuliette, E. W. & Willis, J. K. Balancing the sea level budget. Oceanography 24, 122–129 (2011).

    Article  Google Scholar 

  7. Chen, J. L., Wilson, C. R. & Tapley, B. D. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geosci. 6, 549–552 (2013).

    Article  CAS  Google Scholar 

  8. Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance andimplications. Atmos. Chem. Phys. 11, 13421–13449 (2011).

    Article  CAS  Google Scholar 

  9. Trenberth, K. E. & Fasullo, J. T. Tracking Earth’s energy. Science 328, 316–317 (2010).

    Article  CAS  Google Scholar 

  10. Foster, G. & Rahmstorf, S. Global temperature evolution 1979–2010. Environ. Res. Lett. 6, 044022 (2011).

    Article  Google Scholar 

  11. Kosaka, Y. & Xie, S-P. Recent global warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  CAS  Google Scholar 

  12. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming?. Earth’s Future 10.1002/2013EF000165 (2013).

  13. Llovel, W. et al. Terrestrial waters and sea level variations on interannual time scale. Glob. Planet. Change 75, 76–82 (2011).

    Article  Google Scholar 

  14. Cazenave, A. et al. ENSO influence on the global mean sea level over 1993–2010. Mar. Geodesy 35, 82–97 (2012).

    Article  Google Scholar 

  15. Boening, C., Willis, J. K., Landerer, F. W. & Nerem, R. S. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Google Scholar 

  16. Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

    Article  Google Scholar 

  17. Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    Article  CAS  Google Scholar 

  18. Hallegate, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nature Clim. Change 3, 802–806 (2013).

    Article  Google Scholar 

  19. Gergis, J. L. & Fowler, A. M. A history of ENSO events since A.D. 1525: Implications for future climate change. Clim. Change 92, 343–387 (2009).

    Article  Google Scholar 

  20. Gu, G. & Adler, R. F. Precipitation and temperature variations on the interannual time scale: Assessing the impact of ENSO and volcanic eruptions. J. Climate 24, 2258–2270 (2011).

    Article  Google Scholar 

  21. Trenberth, K., Fasullo, J. & Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dynam. 24, 741–758 (2005).

    Article  Google Scholar 

  22. Alkama, R. et al. Global evaluation of the ISBA-TRIP continental hydrological system. Part 1: Comparison to GRACE Terrestrial Water Storage estimates and in-situ river discharges. J. Hydromet. 11, 583–600 (2010).

    Article  Google Scholar 

  23. Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 10.1029/2011gl048794 (2011).

  24. Loeb, G. N. et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geosci. 5, 110–113 (2012).

    Article  CAS  Google Scholar 

  25. Balmaseda, M. A., Trenberth, K. & Kallen, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1–6 (2013).

    Article  Google Scholar 

  26. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  27. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2 model and GRACE). Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  CAS  Google Scholar 

  28. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  29. Von Schuckmann, K. & Le Traon, P. Y. How well can we derive global ocean indicators from Argo data? Ocean Sci. 7, 783–791 (2011).

    Article  Google Scholar 

  30. Vergnes, J-P. & Decharme, B. A simple groundwater scheme in the TRIP river routing model: Global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges. Hydrol. Earth Syst. Sci. 16, 3889–3908 (2012).

    Article  Google Scholar 

Download references


This work was supported by CNES, CNRS, MétéoFrance, The University of Toulon and the ESA CCI project.

Author information

Authors and Affiliations



A.C. conceived the study and wrote the article. H-B.D. conducted the calculations. B.D. and K.v.S. provided the ISBA/TRIP and Argo data, respectively. B.M. and E.B. contributed to the interpretation and discussion.

Corresponding author

Correspondence to Anny Cazenave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cazenave, A., Dieng, HB., Meyssignac, B. et al. The rate of sea-level rise. Nature Clim Change 4, 358–361 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing