Ruminants, climate change and climate policy

Greenhouse gas emissions from ruminant meat production are significant. Reductions in global ruminant numbers could make a substantial contribution to climate change mitigation goals and yield important social and environmental co-benefits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Compound- and sector-specific emissions of greenhouse gases, associated radiative forcing and global ruminant numbers over the past 50 years.
Figure 2: Average carbon equivalent footprint of protein-rich solid foods per kilogram of product from a global meta-analysis of life-cycle assessment studies.


  1. 1

    Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Nature 476, 43–50 (2011).

    CAS  Article  Google Scholar 

  2. 2

    FAOSTAT (FAO, accessed 12 August 2013);

  3. 3

    Gerber, P. J. et al. Tackling Climate Change Through Livestock — A Global Assessment of Emissions and Mitigation Opportunities (FAO, 2013).

    Google Scholar 

  4. 4

    Steinfeld, H. et al. Livestock's Long Shadow: Environmental Issues and Options (FAO, 2006).

    Google Scholar 

  5. 5

    Smith, P. et al. Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  6. 6

    McAlpine, C. A., Etter, A., Fearnside, P. M., Seabrook, L. & Lawrence, W. F. Glob. Environ. Change. 19, 21–33 (2009).

    Article  Google Scholar 

  7. 7

    Beschta, R. L. et al. Environ. Manage. 51, 474–491 (2012).

    Article  Google Scholar 

  8. 8

    American Dietetic Association J. Am. Dietetic Assoc. 109, 1266–1282 (2009).

  9. 9

    Fraser, G. E. Am. J. Clin. Nutr. 89 (supplement), 1607S–1612S (2009).

    CAS  Article  Google Scholar 

  10. 10

    Wirsenius, S., Hedenus, F. & Mohlin, K. Climatic Change 108, 159–184 (2011).

    Article  Google Scholar 

  11. 11

    Schmidinger, K. & Stehfest, E. Int. J. Life Cycle Assess. 7, 962–972 (2012).

    Article  Google Scholar 

  12. 12

    Popp, A. et al. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  13. 13

  14. 14

    Views on Land Use, Land-use Change and Forestry Issues Referred to in Decision 2/CMP.7, Paragraphs 5-7. Submissions from Parties and Admitted Observer Organizations 12–18 (SBSTA, UNFCCC, 2013);

  15. 15

    Lenton, T. M. Ambio 41, 10–22 (2012).

    Article  Google Scholar 

  16. 16

    Whiteman, G., Hope, C. & Wadhams, P. Nature 499, 401–403 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Nijdam, D., Rood, T. & Westhoek, H. Food Policy 37, 760–770 (2012).

    Article  Google Scholar 

Download references


We thank R. Lamplugh, B. Kauffman, E. Stehfest and R. Comforto for comments on an early draft of this paper. W.R. was an Oregon State University L.L. Stewart faculty scholar during this project. P.S. is a Royal Society-Wolfson Research Merit Award holder. H.H. gratefully acknowledges research funding from EU-FP7 (Volante, grant no. 265104) and the Austrian Science Funds (project no. P20812-G11). S.A.M. acknowledges the support of the NOAA's Climate Program Office and its Atmospheric Chemistry, Carbon Cycle and Climate Program. C.M. is supported by the Australian Research Council (FT100100338). D.B. thanks the Climate and Land Use Alliance for its support of the Union of Concerned Scientists' Tropical Forest and Climate Initiative.

Author information



Corresponding author

Correspondence to William J. Ripple.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ripple, W., Smith, P., Haberl, H. et al. Ruminants, climate change and climate policy. Nature Clim Change 4, 2–5 (2014).

Download citation

Further reading