Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic diversity in caribou linked to past and future climate change

This article has been updated

Abstract

Climate-driven range fluctuations during the Pleistocene have continuously reshaped species distribution leading to populations of contrasting genetic diversity. Contemporary climate change is similarly influencing species distribution and population structure, with important consequences for patterns of genetic diversity and species’ evolutionary potential1. Yet few studies assess the impacts of global climatic changes on intraspecific genetic variation2,3,4,5. Here, combining analyses of molecular data with time series of predicted species distributions and a model of diffusion through time over the past 21 kyr, we unravel caribou response to past and future climate changes across its entire Holarctic distribution. We found that genetic diversity is geographically structured with two main caribou lineages, one originating from and confined to Northeastern America, the other originating from Euro-Beringia but also currently distributed in western North America. Regions that remained climatically stable over the past 21 kyr maintained a high genetic diversity and are also predicted to experience higher climatic stability under future climate change scenarios. Our interdisciplinary approach, combining genetic data and spatial analyses of climatic stability (applicable to virtually any taxon), represents a significant advance in inferring how climate shapes genetic diversity and impacts genetic structure.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Population genetic structure of caribou.
Figure 2: Hindcasted distribution of caribou genetic lineages, as defined by SDMs from 21 ka to present.
Figure 4: Models of genetic diversity.
Figure 3: Stability of climatic suitability for caribou.

Change history

  • 09 January 2014

    In the version of this Letter originally published online, the funding information for K. M. was missing from the Acknowledgements section. This has now been corrected in all versions of the Letter.

References

  1. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  2. Balint, M. et al. Cryptic biodiversity loss linked to global climate change. Nature Clim. Change 1, 313–318 (2011).

    Article  Google Scholar 

  3. Rubidge, E. M. et al. Climate-induced range contraction drives genetic erosion in an alpine mammal. Nature Clim. Change 2, 285–288 (2012).

    Article  Google Scholar 

  4. Alsos, I. G. et al. Genetic consequences of climate change for northern plants. Proc. R. Soc. B 279, 2042–2051 (2012).

    Article  Google Scholar 

  5. Pauls, S. U., Nowak, C., Balint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).

    Article  Google Scholar 

  6. Frankham, R., Ballou, J. D. & Briscoe, D. A. An Introduction to Conservation Genetics (Cambridge Univ. Press, 2002).

    Book  Google Scholar 

  7. IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).

  8. Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).

    Article  CAS  Google Scholar 

  9. Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 341, 514–519 (2013).

    Article  CAS  Google Scholar 

  10. Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–U195 (2011).

    Article  Google Scholar 

  11. Hummel, M. & Ray, J. C. Caribou and the North: A Shared Future (Dundurn Press, 2008).

    Google Scholar 

  12. Festa-Bianchet, M., Ray, J. C., Boutin, S., Cote, S. & Gunn, A. Conservation of caribou (Rangifer tarandus) in Canada: An uncertain future. Can. J. Zool. 89, 419–434 (2011).

    Article  Google Scholar 

  13. COSEWIC Assessment and Update Status Report on the Woodland Caribou Rangifer Tarandus Caribou in Canada (Committee on the Status of Endangered Wildlife in Canada, 2002).

  14. Vors, L. S. & Boyce, M. S. Global declines of caribou and reindeer. Glob. Change Biol. 15, 2626–2633 (2009).

    Article  Google Scholar 

  15. Maiorano, L. et al. Building the niche through time: Using 13000 years of data to predict the effects of climate change on three tree species in Europe. Glob. Ecol. Biogeogr. 22, 302–317 (2013).

    Article  Google Scholar 

  16. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article  CAS  Google Scholar 

  17. Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the brazilian atlantic forest hotspot. Science 323, 785–789 (2009).

    Article  CAS  Google Scholar 

  18. Van Oort, H., McLellan, B. N. & Serrouya, R. Fragmentation, dispersal and metapopulation function in remnant populations of endangered mountain caribou. Anim. Conserv. 14, 215–224 (2010).

    Article  Google Scholar 

  19. Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).

    Article  CAS  Google Scholar 

  20. Clarke, G., Leverington, D., Teller, J. & Dyke, A. Superlakes, megafloods, and abrupt climate change. Science 301, 922–923 (2003).

    Article  CAS  Google Scholar 

  21. Lomba, A. et al. Overcoming the rare species modelling paradox: Test of a novel hierarchical framework with an Iberian endemic plant. Biol. Conserv. 143, 2647–2657 (2010).

    Article  Google Scholar 

  22. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  Google Scholar 

  23. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2013).

  24. Goudet, J. FSTAT: A program to estimate and test gene diversities and fixation indices version 2.9.3 (Univ. Lausanne, 2005); http://www.unil.ch/dee/page6767_en.html.

  25. Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029 (1999).

    CAS  Google Scholar 

  26. Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  Google Scholar 

  27. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article  CAS  Google Scholar 

  28. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article  Google Scholar 

  29. Singarayer, J. & Valdes, P. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev. 29, 43–55 (2010).

    Article  Google Scholar 

  30. Espı´ndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Adamczewski, T. Baker, A. Beauchemin, K. Beckmen, V. Brodeur, M. Campbell, D. Cooley, S. Crowley, M. Dumond, D. Elliott, D. Ehrich, D. Fortin, M. Gamberg, R.A. Ims, L. Jourdain, M. Kholodova, I. Menyshena, J. Neville, M. Paré, D. Paetkau, K. I. Prokovsky, K. Poole, D. Riach, S. Rivard, G. H. Roffler, D. Russel, M-H. St-Laurent, R. Serrouya, A. Sokolov, V. Sokolov, A. Stien, J. Taillon, J. Williams, N. G. Yoccoz, the Government of Yukon, the Government of Northwest Territories, the Government of Nunavut, the Government of Labrador and Newfoundland, le Gouvernement du Québec, the Alaska Department of Fish and Game, Hydro-Québec and Manitoba Hydro for providing help to collect samples. Financial support was provided by partners of Caribou Ungava, that is, ArcticNet, Natural Sciences and Engineering Research Council of Canada (NSERC), Hydro-Québec, Xstrata Nickel-Mine Raglan, Fédération des Pourvoiries du Québec, CircumArctic Rangifer Monitoring and Assessment Network, Ministère des Resources Naturelles et de la Faune du Québec, Labrador and Newfoundland Wildlife Division, First Air, Makivik Corporation, Fédération Québécoise des Chasseurs et Pêcheurs, Fondation de la Faune du Québec, Institute for Environmental Monitoring and Research, Canada Foundation for Innovation, Petroleum Technology Alliance of Canada, Canadian Association of Petroleum Producers and Norwegian Research Council. K.M. acknowledges support from the National Science Foundation IGERT program, the National Fish and Wildlife Foundation, and Alaska EPSCoR NSF award #EPS-0701898 and the state of Alaska. We are grateful to C. Hins, S. de Bellefeuille and G. Côté for logistic support and T. Broquet and P. Legagneux for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.D.C. had the original idea for the study. L.B. was responsible for supervising the genetic analyses. G.Y., L.P., S.D.C. and L.B. designed the research. S.C., C.C., C.D., K.J.H., R.J.I., D.A.J., L.K., N.L., K.M., M.M., K.L.P., K.H.R., T.S, S.G.Þ, B.V.W. and S.D.C. collected the samples. G.Y., L.P. and J.O. carried out the analyses, wrote the manuscript and the Supplementary Information, with input from N.L., A.G., S.D.C. and L.B. All authors discussed the results, implications and edited the manuscript.

Corresponding authors

Correspondence to Glenn Yannic, Louis Bernatchez or Steeve D. Côté.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yannic, G., Pellissier, L., Ortego, J. et al. Genetic diversity in caribou linked to past and future climate change. Nature Clim Change 4, 132–137 (2014). https://doi.org/10.1038/nclimate2074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing