Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

El Niño–La Niña cycle and recent trends in continental evaporation


The hydrological cycle is expected to intensify in response to global warming1,2,3. Yet, little unequivocal evidence of such an acceleration has been found on a global scale4,5,6. This holds in particular for terrestrial evaporation, the crucial return flow of water from land to atmosphere7. Here we use satellite observations to reveal that continental evaporation has increased in northern latitudes, at rates consistent with expectations derived from temperature trends. However, at the global scale, the dynamics of the El Niño/Southern Oscillation (ENSO) have dominated the multi-decadal variability. During El Niño, limitations in terrestrial moisture supply result in vegetation water stress and reduced evaporation in eastern and central Australia, southern Africa and eastern South America. The opposite situation occurs during La Niña. Our results suggest that recent multi-year declines in global average continental evaporation8,9 reflect transitions to El Niño conditions, and are not the consequence of a persistent reorganization of the terrestrial water cycle. Future changes in continental evaporation will be determined by the response of ENSO to changes in global radiative forcing, which still remains highly uncertain10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interannual variability of E for 1980–2011.
Figure 2: Episodes of prolonged decline in E and their relation to ENSO.
Figure 3: Characteristic response of land-surface conditions to ENSO.

Similar content being viewed by others


  1. Wild, M., Grieser, J. & Schär, C. Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett. 35, L17706 (2008).

    Article  Google Scholar 

  2. Huntington, T. G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 319, 83–95 (2006).

    Article  Google Scholar 

  3. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    CAS  Google Scholar 

  4. Zhang, X. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007).

    Article  CAS  Google Scholar 

  5. Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    Article  CAS  Google Scholar 

  6. Chou, C. et al. Increase in the range between wet and dry season precipitation. Nature Geosci. 6, 263–267 (2013).

    Article  CAS  Google Scholar 

  7. Dolman, A. J. & De Jeu, R. A. M. Evaporation in focus. Nature Geosci. 3, 296–296 (2010).

    Article  CAS  Google Scholar 

  8. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  Google Scholar 

  9. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707–3720 (2013).

    Article  Google Scholar 

  10. Vecchi, G. A. & Wittenberg, A. T. El Niño and our future climate: Where do we stand? WIREs Clim. Change 1, 260–270 (2010).

    Article  Google Scholar 

  11. Collins, M. El Niño- or La Niña-like climate change? Clim. Dyn. 24, 89–104 (2005).

    Article  Google Scholar 

  12. Vautard, R., Cattiaux, J., Yiou, P., Thépaut, J.-N. & Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nature Geosci. 3, 756–761 (2011).

    Article  Google Scholar 

  13. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 416-417, 182–205 (2012).

    Article  Google Scholar 

  14. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  15. Teuling, A. J. et al. A regional perspective on trends in continental evaporation. Geophys. Res. Lett. 36, L02404 (2009).

    Article  Google Scholar 

  16. Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H. & Dolman, A. J. Magnitude and variability of land evaporation and its components at the global scale. Hydrol. Earth Syst. Sci. 15, 967–981 (2011).

    Article  Google Scholar 

  17. Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901–919 (2008).

    Article  Google Scholar 

  18. Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    Article  CAS  Google Scholar 

  19. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102 (2011).

    Article  Google Scholar 

  20. Jiménez, C., Prigent, C. & Aires, F. Toward an estimation of global land surface heat fluxes from multisatellite observations. J. Geophys. Res. 114, D06305 (2009).

    Article  Google Scholar 

  21. Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Article  Google Scholar 

  22. Miralles, D. G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453–469 (2011).

    Article  Google Scholar 

  23. Douville, H., Ribes, A., Decharme, B., Alkama, R. & Sheffield, J. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nature Clim. Change 2, 1–4 (2012).

    Article  Google Scholar 

  24. Stegehuis, A. I. et al. Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim. Dyn. 41, 455–477 (2012).

    Article  Google Scholar 

  25. Syed, T. H., Famiglietti, J. S., Chambers, D. P., Willis, J. K. & Hilburn, K. Satellite-based global-ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl Acad. Sci. USA 107, 17916–17921 (2010).

    Article  CAS  Google Scholar 

  26. Dai, A. & Wigley, T. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 27, 1283–1286 (2000).

    Article  Google Scholar 

  27. Mestas-Nuñez, A. M., Kelly, F. J., Bentamy, A. & Katsaros, K. B. The ENSO footprint in monthly satellite evaporation over the global ocean during 1993–2007. Remote Sens. Lett. 4, 706–714 (2013).

    Article  Google Scholar 

  28. Liu, Y. Y. et al. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 123, 1–18 (2012).

    Article  Google Scholar 

  29. Tucker, C. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article  Google Scholar 

  30. Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

    Article  CAS  Google Scholar 

  31. Miralles, D. G., van den Berg, M, Teuling, R. & De Jeu, R. A. M. Soil moisture–temperature coupling: A multiscale observational analysis. Geophys. Res. Lett. 39, L21707 (2012).

    Article  Google Scholar 

Download references


This work is financially supported by the European Space Agency (ESA) WACMOS-ET project (contract no. 4000106711/12/I-NB). A.J.T. acknowledges support from The Netherlands Organization for Scientific Research (Veni grant 016.111.002). W.A.D.’s contribution is financially supported by ESA’s projects WATCHFUL (4000107122/12/I-NB) and Climate Change Initiative (4000104814/11/I-NB). A.J.D. is supported by the EU FP7 Amazalert project (grant agreement 282664). We thank B. Mueller, M. Jung and M. Reichstein for the multi-model data used in Fig. 1a. We are grateful to the research centres that made the satellite and re-analysis data available, and especially to the FLUXNET and ISMN communities for the in situ measurements used in the validations.

Author information

Authors and Affiliations



D.G.M. initiated the study and did the analyses. D.G.M. and T.R.H.H. coded the evaporation methodology, and M.J.v.d.B. and N.E.C.V. its data assimilation scheme. R.M.P., H.E.B., W.A.D. and R.A.M.d.J. provided different sets of data. All co-authors contributed to the editing of the manuscript and to the discussion and interpretation of the results.

Corresponding author

Correspondence to Diego G. Miralles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miralles, D., van den Berg, M., Gash, J. et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nature Clim Change 4, 122–126 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing