Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Partial offsets in ocean acidification from changing coral reef biogeochemistry

Abstract

Concerns have been raised about how coral reefs will be affected by ocean acidification1,2, but projections of future seawater CO2 chemistry have focused solely on changes in the pH and aragonite saturation state (Ωa) of open-ocean surface seawater conditions surrounding coral reefs1,2,3,4 rather than the reef systems themselves. The seawater CO2 chemistry within heterogeneous reef systems can be significantly different from that of the open ocean depending on the residence time, community composition and the main biogeochemical processes occurring on the reef, that is, net ecosystem production (NEP = gross primary production − autotrophic and heterotrophic respiration) and net ecosystem calcification (NEC = gross calcification − gross CaCO3 dissolution), which combined act to modify seawater chemistry5,6,7. On the basis of observations from the Bermuda coral reef, we show that a range of projected biogeochemical responses of coral reef communities to ocean acidification by the end of this century could partially offset changes in seawater pH and Ωa by an average of 12–24% and 15–31%, respectively.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Bathymetry of the Bermuda coral reef platform.
Figure 2: Surface seawater CO2 system parameters on the Bermuda coral reef platform in 2010.
Figure 3: Biogeochemical control of DIC and TA on the Bermuda coral reef and resulting seawater Ωa.
Figure 4: Projected summer surface seawater pH and Ωa on the Bermuda coral reef platform in the year 2100.
Figure 5: Projected winter surface seawater pH and Ωa on the Bermuda coral reef platform in the year 2100.

References

  1. Kleypas, J. A. et al. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120 (1999).

    CAS  Article  Google Scholar 

  2. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Article  Google Scholar 

  3. Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36, L05606 (2009).

    Article  Google Scholar 

  4. Friedrich, T. et al. Detecting regional anthropogenic trends in ocean acidification against natural variability. Nature Clim. Change 2, 167–171 (2012).

    CAS  Article  Google Scholar 

  5. Suzuki, A. & Kawahata, H. Carbon budget of coral reef systems: An overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus B 55, 428–44 (2003).

    Article  Google Scholar 

  6. Anthony, K. R. N., Kleypas, J. A. & Gattuso, J-P. Coral reefs modify their seawater carbon chemistry—implications for impacts of ocean acidification. Glob. Change Biol. 17, 3655–3666 (2011).

    Article  Google Scholar 

  7. Kleypas, J. A., Anthony, K. R. N. & Gattuso, J-P. Coral reefs modify their seawater carbon chemistry—case study from a barrier reef (Moorea, French Polynesia). Glob. Change Biol. 17, 3667–3678 (2011).

    Article  Google Scholar 

  8. Orr, J. in Ocean Acidification (eds Gattuso, J-P. & Hansson, L) 41–66 (Oxford Univ. Press, 2011).

    Google Scholar 

  9. Langdon, C. & Atkinson, M. J. Effect of elevated p CO 2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, C09S07 (2005).

    Google Scholar 

  10. Erez, J., Reynaud, S., Silverman, J., Schneider, K. & Allemand, D. in Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 151–177 (Springer, 2010).

    Google Scholar 

  11. Andersson, A. J. et al. Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: Mesocosm-scale experimental evidence. Biogeosciences 6, 1811–1823 (2009).

    CAS  Article  Google Scholar 

  12. Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).

    Article  Google Scholar 

  13. Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, 2008).

  14. Bates, N. R., Amat, A. & Andersson, A. J. Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7, 2509–2530 (2010).

    CAS  Article  Google Scholar 

  15. Venti, A., Kadko, D., Andersson, A. J., Langdon, C. & Bates, N. A multi tracer model approach to estimate reef water residence times. Limnol. Oceanogr. Methods 10, 1078–1095 (2012).

    Article  Google Scholar 

  16. Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in Seawater—Equilibrium, Kinetics, Isotopes 364 (Elsevier, 2001).

    Google Scholar 

  17. Frankignoulle, M. et al. Carbon fluxes in coral reefs. II. Eularian study of inorganic carbon dynamics and measurements of air–sea CO2 exchange. Mar. Ecol. Prog. Ser. 145, 123–132 (1996).

    Article  Google Scholar 

  18. Lantz, C. A., Atkinson, M. J., Winn, C. W. & Kahng, S. E. Dissolved inorganic carbon and total alkalinity of a Hawaiian fringing reef: Chemical techniques for monitoring the effects of ocean acidification on coral reefs. Coral Reefs http://dx.doi.org/10.1007/s00338-013-1082-5 (2013).

  19. Andersson, A. J. & Gledhill, D. Ocean acidification and coral reefs: Effects on breakdown, dissolution and net ecosystem calcification. Annu. Rev. 5, 321–348 (2013).

    Google Scholar 

  20. Bates, N. R. et al. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9, 2509–2522 (2012).

    CAS  Article  Google Scholar 

  21. Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).

    CAS  Article  Google Scholar 

  22. Leclercq, N., Gattuso, J-P. & Jaubert, J. Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol. Oceanogr. 47, 558–564 (2002).

    CAS  Article  Google Scholar 

  23. Silverman, J., Lazar, B. & Erez, J. Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J. Geophys. Res. 112, C05004 (2007).

    Article  Google Scholar 

  24. Andersson, A., Bates, N. & Mackenzie, F. Dissolution of carbonate sediments under rising pCO2 and ocean acidification: Observations from Devil’s Hole, Bermuda. Aquat. Geochem. 13, 237–64 (2007).

    CAS  Article  Google Scholar 

  25. Shaw, E. C., McNeil, B. I. & Tilbrook, B. Impacts of ocean acidification in naturally variable coral reef ecosystems. J. Geophys. Res. 117, C03038 (2012).

    Article  Google Scholar 

  26. Manzello, D. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl Acad. Sci. USA 105, 10450–10455 (2008).

    CAS  Article  Google Scholar 

  27. Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Clim. Change 1, 165–169 (2011).

    CAS  Article  Google Scholar 

  28. Kleypas, J. A., McManus, J. W. & Menez, L. A. B. Environmental limits to coral reef development: where do we draw the line? Am. Zool. 39, 146–59 (1999).

    Article  Google Scholar 

  29. Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    CAS  Article  Google Scholar 

  30. Smith, R. S. et al. in Coral Reefs of the United Kingdom Overseas Territories, Coral Reefs of the World 4 (ed. Sheppard, C. R. C.) 173–188 (Springer, 2013).

    Book  Google Scholar 

  31. Dickson, A. G., Sabine, C. L. & Christian, J. R. (eds) Guide to Best Practices for Ocean CO 2 Measurements PICES special publication 3 (IOCCP, 2007).

  32. Mehrbach, C. et al. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from NSF Grants OCE 09-28406 (A.J.A., N.R.B., S.J.d.P.) and OCE 12-55042 (A.J.A.) and NOAA grant NA10AR4310094 (A.J.A., N.R.B.). We thank the MEP laboratory at BIOS, and especially T. Noyes, as well as the BATS laboratory for assisting with monthly collection of seawater samples inshore and offshore. We are also grateful to A. Collins, R. Garley, M. Best, K. Neely, G. Fuentes, M. Humphrey, A. Cevallos and R. Rasse for help with spatial surveys and sample analyses.

Author information

Authors and Affiliations

Authors

Contributions

A.J.A. and N.R.B. designed the study. A.J.A. carried out the study, data analyses (with K.L.Y.), model calculations and simulations. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Andreas J. Andersson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andersson, A., Yeakel, K., Bates, N. et al. Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nature Clim Change 4, 56–61 (2014). https://doi.org/10.1038/nclimate2050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2050

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing