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a process called translation — are positively 
correlated with temperature. Experimental 
studies in the laboratory show that the 
translation apparatus of two diatom species 
worked most efficiently when grown at 
temperatures close to average equatorial 
surface waters, and were less efficient at 
Arctic temperatures as the cold slowed 
down the molecular machinery. However, 
Toseland et al. observed that actual cellular 
productivity in the Arctic and Antarctic 
was not as repressed as it should be, despite 
the colder water. They attribute this to a 
considerable increase in abundance of the 
cellular translation machinery that helps to 
build protein, so called ribosomes, which 
are bound in P-rich RNA (Fig. 1). Hence, 
to overcome the low water temperatures 
(average of 2 °C) and concomitant 
reduction in efficiency, these cells just make 
more protein factories to maintain their 
productivity. As this requires more P, the 
N:P ratio in their cells is reduced.

This information led to the development 
of a physiological model of the 
phytoplankton cell that described how 
much available P and N the cell would use 
for creating protein, versus how much it 
would put into creating RNA. The problem 
is that RNA uses more P, which is often a 
limiting nutrient in the world’s oceans3; 
therefore if the cell diverts its resources 
to create more RNA-laden ribosomes to 
overcome their reduced efficiency, it needs 
more P than cells found in warmer water at 

the equator. The authors placed their model 
cell in a computer-generated model ocean 
that replicates the changing temperature, 
nutrient availability and amount of light 
that real phytoplankton cells would 
experience across the global ocean. The 
model validated the hypothesis that under 
low temperatures the cells invested more in 
their cellular machinery to overcome the 
inefficiency of their factories; whereas under 
higher temperatures the cells invested in 
photosynthesis and hence biomass. 

In further work they artificially raised 
the average sea surface temperature by 
5 °C, and observed what happened to 
the phytoplankton cell. As the polar sea 
warmed up, the phytoplankton cell reduced 
the production of P-rich ribosomal RNA, 
changing the cellular N:P ratio, which 
by definition fundamentally alters this 
ratio in organic matter. Why does this 
matter? If the N:P ratio increases then 
the cell has an increased N requirement, 
which will cause N to become a limiting 
resource. Nitrogen limitation could reduce 
photosynthetic productivity causing an 
increase in carbon flux from the surface 
ocean to the atmosphere, thereby resulting 
in a significant reduction in carbon 
sequestration by the ocean. Potentially 
this could result in a catastrophic positive 
feedback loop, as more atmospheric carbon 
equals more warming9.

Although this model represents one 
of the most sophisticated methods for 

capturing and predicting the result of rising 
temperature on global oceanic primary 
productivity, it still has limitations. For 
example, it doesn’t take into consideration 
the changes in atmospheric carbon levels, 
which could bolster photosynthetic 
efficiency and inflate predictions. The model 
also doesn’t account for cyanobacteria, 
the other major phytoplankton group in 
the ocean, nor the interactions with other 
non-photosynthetic bacteria. Future work 
should focus on the integration of these 
efforts to create a comprehensive model that 
will enable us to predict the real outcome of 
climate change and global warming in this 
essential system. ❐
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AGRICULTURAL IMPACTS

Big data insights into pest spread
Pests and diseases reduce agricultural yields and are an important wildcard in the evaluation of future climate impacts. 
A unique global record of pests and diseases provides evidence for poleward expansions of their distributions.

Karen A. Garrett

Food security depends on our ability 
to effectively manage crop pests 
(arthropods and pathogens). Because 

of the important effects of weather variables 
such as temperature and precipitation 
on crop pests, scientists have for some 
time hypothesized that where climate 
change results in a more (less) favourable 
environment for pest establishment, losses 
to unmanaged pests are likely to increase 
(decrease)1. But evidence that ranges have 
shifted under climate change is often 
anecdotal, and the availability of long-term 

data sets of pest occurrence is limited2,3. 
In this issue of Nature Climate Change, 
Bebber and colleagues4 present an analysis 
of decades of reported pest distributions, 
concluding that pests have moved towards 
the poles over the past fifty years, in line 
with expectation under climate change.

One of the interesting aspects of this 
analysis is its reliance on ‘big data’. The data 
set that Bebber and colleagues4 analysed, 
although not challenging in terms of sheer 
storage and computational requirements, 
has been assembled over some time as 

many, many individuals reported where 
and when they found particular pests. In 
their popular book, Mayer-Schönberger 
and Cukier5 discuss three aspects of big 
data that present challenges for scientists. 
The first is a shift towards using large 
amounts of data from different sources, 
often collected for different purposes. The 
second is an acceptance of ‘messiness’, 
where having large amounts of data may 
make up for introducing increased sources 
of variability, and potentially even for 
introducing bias (more on that later). The 
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third is a willingness to accept correlations 
as the outcome of analyses, rather than 
necessarily understanding causation.

Big data issues are not new in the context 
of mapping the geographic distribution of 
species6. Pest risk mapping generally has 
as a first step either (1) recording where a 
pest has been observed and the associated 
environmental conditions, or (2) obtaining 
estimates of the effects of environmental 
variables on a pest in controlled experimental 
conditions such as growth chambers7. 
Both approaches may err by estimating the 
environment–risk relationship based on 
specific factors (such as sampling approaches 
or pest subpopulations) that are not relevant 
in other areas where risk will be evaluated. 
A particular problem with the records of 
presence, as in the data used by Bebber and 

colleagues, is that there tends to be little 
information about the uncertainty associated 
with these records, in contrast to some more 
standard approaches to meta-analysis.

Bebber and colleagues4 take geographic 
mapping a step further by evaluating how 
the records of pest distributions have 
changed over time. An important challenge 
in interpreting the records in this way is to 
convincingly demonstrate that sources of bias 
have been adequately accounted for, or that 
the analysis is conservative with regard to 
likely sources of bias. Bebber and colleagues 
use the assumption that the scientific 
infrastructure in tropical nations has lagged 
that in temperate areas to postulate that more 
limited sampling effort in the tropics may 
result in a bias towards reporting pests in 
temperate countries earlier. Consequently, 

when they find that reporting has increased 
in temperate areas in recent years, this is 
conservatively interpreted as evidence that 
pests are moving further into temperate 
regions. This is a key argument, but one that 
is difficult to evaluate because good records 
of sampling effort corresponding to entries 
in the CABI database8 would be very difficult 
to assemble. It can be argued, however, that 
the CABI data set is such a unique entity, 
as the largest global repository for data 
related to global pest distributions, that it 
merits analysis even if we know there is the 
possibility of little-understood biases.

An understanding of current and 
future changes in the geographic ranges of 
agricultural pests is important from several 
standpoints. Good estimates of current 
changes allow us to test our understanding 
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Figure 1 | Bebber and colleagues4 address the challenge of evaluating how rapidly crop pests (arthropods and pathogens) have spread to the north or south over 
recent decades, based on observations accumulated from a wide range of observers. The maps show an example for a hypothetical pest. A, Weather variables 
such as temperature, precipitation and relative humidity are important in determining how likely a pest is to become established in a new area, influencing risk 
factors such as the probability of overwintering (oversummering) and the number of generations per year. B, Other factors that determine how likely a pest is to 
become established in a new area include: human transportation networks; agricultural management, including planting dates and use of tillage; the distribution 
of susceptible hosts, where some forms of resistance are temperature-sensitive; interactions with other hosts, arthropods and microbes. C, Other factors that 
determine how likely an established pest is to be observed include: traits of pest or disease (ease of identification or diagnosis, perceived economic importance, 
shifts in taxonomic resolution); traits of host (economic importance, hectarage); traits of location (infrastructure, training of personnel, sampling effort). Images 
from: A,B, Istock/Thinkstock; C, © E. De Wolf.
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of the most important factors influencing 
pest risk, and improve our ability to provide 
realistic scenarios for the future. Scenarios 
of future pest and disease distributions 
under climate change support prioritization 
in agricultural research programmes. For 
example, if it is likely that a particular disease 
will become more important in a region, 
crop-breeding programmes can respond by 
incorporating better resistance to that disease 
in locally adapted varieties.

The prevalence of crop pests is a 
function of many factors, so identifying 
particular drivers of change is challenging9 
(Fig. 1). If we wish to ask whether crop 
pests have altered distributions because 
of climate change, this is complicated by 
the many other factors that have changed 
simultaneously, even when long-term data 
are available10. It is reasonable to expect 
that higher temperatures will often reduce 
limitations on pest overwintering and 
increase the number of pest generations 
per year (Fig. 1A). However, other factors 

simultaneously influence pest risk at any 
location, including host genotypic and 
phenotypic resistance, where phenotypic 
resistance may respond to weather variables 
such as temperature (Fig. 1B). When 
multiple observers and multiple levels of 
sampling effort are involved, this adds 
another layer of uncertainty when comparing 
the actual distribution of pests and reported 
distributions (Fig. 1C).

Bebber and colleagues4 provide a 
stimulating analysis of changes in pest 
distributions, along with a new set of 
hypotheses to engage scientists working with 
pests. Future ‘big data’ analyses may address 
the geographic distribution of pest genomes 
and microbial metagenomes associated 
with plants and soil, including analysis of 
the geographic spread of genes important 
in crop damage. Cell phone availability may 
facilitate analysis of global digital images of 
crop damage. Better data archiving systems 
and more data sharing are needed to support 
future synthetic analyses. For addressing 

large-extent questions, we also need advances 
in methods to evaluate more directly the 
factors that lead, not only to pest risk, but 
also to reporting of observations, to support 
understanding of what variables may be good 
proxies for sampling effort.  ❐
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OCEAN–ATMOSPHERE INTERACTIONS

Bottom up in the tropics
A study reveals that recent warming in the Indian Ocean and in the Pacific ‘warm pool’ has caused a cooling near 
the top of the tropical troposphere above, leading to less water vapour entering the stratosphere.

Qiang Fu

Water vapour in the stratosphere 
is a greenhouse gas. It is 
constrained from entering the 

stratosphere in the tropics by the thermal 
boundary between the stratosphere and 
troposphere1  — the tropical tropopause, 
the coldest point in the lower atmosphere. 
Cold-point temperatures at the tropical 
tropopause (Fig. 1a) have important 
implications for both stratospheric 
chemistry2 and global climate change3. The 
importance of the spatial distribution of 
temperature (Fig. 1b) is well recognized, 
as the temperature minimum is relevant 
to cloud formation and subsequent 
dehydration through atmospheric 
circulation4. In the boreal winter, for 
example, the lowest cold-point temperatures 
over the warm pool in the tropical western 
Pacific govern the amount of water vapour 
that enters the stratosphere5. It is thus 
critically important to understand how the 
zonal (longitudinal) structure of the tropical 
cold-point temperature would respond 
to global warming. Now, reporting in the 

Journal of Geophysical Research, Garfinkel 
and co-workers6 find that the warming in 
the tropical upper troposphere over the 
past 30 years has been strongest over the 
Indo-Pacific warm pool, where cooling near 
the tropopause has been strongest. They 
suggest that warming in the Indian Ocean 
and the Pacific warm pool has led to zonal 
asymmetry in atmospheric temperature 
trends, and that such trends may continue in 
the future.

Temperatures near the tropical 
tropopause are determined by a complex 
combination of stratospheric (top-down) 
and tropospheric (bottom-up) processes7. 
The zonal structures at 100 hPa (Fig.1b) 
closely resemble the mean pattern of the 
equatorial planetary waves — large-scale 
perturbations of the atmospheric dynamical 
structure. These are driven by massive 
convection over the Indo-Pacific warm 
pool8, with the lowest temperatures and 
largest cirrus cloud fractions over the 
western Pacific and Maritime Continent 
(which includes the islands of Indonesia, 

New Guinea and Malaysia, and the 
surrounding shallow seas)9. The signature 
of the equatorial planetary waves is also 
evident in the temperature variability over 
intraseasonal to interannual timescales9. The 
responses of temperature structures at 100 
and 250 hPa are reversed in sign because the 
maximum amplitude of equatorial planetary 
waves with opposite phases occurs at these 
two levels. The temperatures and cloud 
fraction near the tropical tropopause are 
also strongly modulated by extra-tropical 
stratospheric waves. These drive the 
Brewer–Dobson circulation (BDC)  — a 
large-scale latitudinal circulation in the 
stratosphere with air rising across the 
tropical tropopause, moving polewards 
and sinking towards the extra-tropical 
troposphere — which is particularly 
evident in their seasonal cycles9–11 (Fig.1c). 
In contrast to the equatorial planetary 
waves, the extra-tropical stratospheric 
waves are associated with zonally 
symmetric temperature anomalies in the 
lower stratosphere.
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