Uncertainty analysis in climate change assessments

Subjects

Use of state-of-the-art statistical methods could substantially improve the quantification of uncertainty in assessments of climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Uncertainty of projected sea-level rise for 2075 in Olympia, Washington under high emission scenario RCP 8.5 (ref. 23).

References

  1. 1

    Knutti, R. & Hegerl, G. C. Nature Geosci. 1, 735–743 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Guttorp, P. Stat. Polit. Policy 3 http://dx.doi.org/10.1515/2151-7509.1055 (2012).

  3. 3

    Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010); available via http://go.nature.com/PvUJbk

    Google Scholar 

  4. 4

    Moss, R. H. & Yohe, G. Assessing and Communicating Confidence Levels and Uncertainties in the Main Conclusions of the NCA 2013 Report: Guidance for Authors and Contributors (National Climate Assessment Development and Advisory Committee, 2011); available via http://go.nature.com/AdQeGO

    Google Scholar 

  5. 5

    Katz, R. W. Stat. Sci. 17, 97–122 (2002).

    Article  Google Scholar 

  6. 6

    Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data (Wiley, 2011).

    Google Scholar 

  7. 7

    Gelfand, A. E., Zhu, L. & Carlin, B. P. Biostatistics 2, 31–45 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Berrocal, V. J., Craigmile, P. F. & Guttorp, P. Environmetrics 23, 482–492 (2012).

    Article  Google Scholar 

  9. 9

    Mearns, L. O. et al. Bull. Am. Meteorol. Soc. 93, 1337–1362 (2012).

    Article  Google Scholar 

  10. 10

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012); available at http://www.ipcc-wg2.gov/SREX

  11. 11

    Coles, S. An Introduction to Statistical Modeling of Extreme Values (Springer, 2001).

    Google Scholar 

  12. 12

    Milly, P. C. D. et al. Science 319, 573–574 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Donat, M. G. & Alexander, L. V. Geophys. Res. Lett. 39, L14707 (2012).

    Article  Google Scholar 

  14. 14

    Hansen, J., Sato, M. & Ruedy, R. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Brown, S. J., Caesar, J. & Ferro, C. A. T. J. Geophys.Res. 113, D05115 (2008).

    Article  Google Scholar 

  16. 16

    Karl, T. R. & Katz, R. W. Proc. Natl Acad. Sci. USA 109, 14720–14721 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Spiegelhalter, D., Pearson, M. & Short, I. Science 333, 1393–1400 (2011).

    CAS  Article  Google Scholar 

  18. 18

    http://www.climathnet.org

  19. 19

    http://www2.image.ucar.edu/gsp

  20. 20

    http://imsc.pacificclimate.org

  21. 21

    http://www.nr.no/sarma

  22. 22

    http://www.statmos.washington.edu

  23. 23

    http://go.nature.com/tzfO2Z

  24. 24

    http://cmip-pcmdi.llnl.gov

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard W. Katz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katz, R., Craigmile, P., Guttorp, P. et al. Uncertainty analysis in climate change assessments. Nature Clim Change 3, 769–771 (2013). https://doi.org/10.1038/nclimate1980

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing