Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of coastal plant communities for climate change mitigation and adaptation

Subjects

A Corrigendum to this article was published on 27 July 2016

This article has been updated

Abstract

Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Key processes of vegetated coastal habitats for climate change mitigation and adaptation.

Change history

  • 15 June 2016

    In the version of this Review Article originally published, a calculation error resulted in the underestimation of the global primary production of vegetated coastal habitats reported in Table 1. The citations in this table have been revised and the corrected table is shown below. In addition, reference 101 has been replaced: Charpy-Robaud, C. & Sournia, A. The comparative estimation of phytoplanktonic microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990). These errors have been corrected in the online version of this Review Article.

References

  1. Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  2. Agrawal, A., Nepstad, D. & Chhatre, A. Reducing emissions from deforestation and forest degradation. Annu. Rev. Environ. Resour. 36, 373–396 (2011).

    Google Scholar 

  3. Duarte, C. M., Middelburg, J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    CAS  Google Scholar 

  4. Nellemann, C. et al. Blue Carbon: A Rapid Response Assessment (United Nations Environment Programme, 2009).

    Google Scholar 

  5. McLeod, E. et al. A blueprint for blue carbon: Towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  6. Jones, H. P., Hole, D. G. & Zavaleta, E. S. Harnessing nature to help people adapt to climate change. Nature Clim. Change 2, 504–509 (2012).

    Google Scholar 

  7. http://www.ramsar.org

  8. Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).

    CAS  Google Scholar 

  9. Orth, R. J. et al. A global crisis for seagrass ecosystems. BioScience 56, 987–996 (2006).

    Google Scholar 

  10. Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world's threatened major tropical environments. BioScience 51, 807–815 (2001).

    Google Scholar 

  11. Adam, P. Saltmarshes in a time of change. Environ. Conserv. 29, 39–61 (2002).

    Google Scholar 

  12. Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl Acad. Sci. USA 102, 2826–2831 (2005).

    CAS  Google Scholar 

  13. Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375 (2010).

    Google Scholar 

  14. Wernberg, T., Thomsen, M. S., Tuya, F. & Kendrick, G. A. J. Exp. Mar. Biol. Ecol. 400, 264–271 (2011).

    Google Scholar 

  15. Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nature Clim. Change 2, 821–824 (2012).

    Google Scholar 

  16. Sorte, C. J. B., Williams, S. L. & Carlton, J. T. Marine range shifts and species introductions: Comparative spread rates and community impacts. Glob. Ecol. Biogeog. 19, 303–316 (2010).

    Google Scholar 

  17. Ackerman, J. D. & Okubo, A. Reduced mixing in a marine macrophyte canopy. Funct. Ecol. 7, 305–309 (1993).

    Google Scholar 

  18. Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).

    Google Scholar 

  19. Mendez, F. J. & Losada, I. J. Transformation of random and non-random breaking waves over vegetation fields. Coast. Eng. 51, 103–118 (2004).

    Google Scholar 

  20. Bouma, T. J. et al. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86, 2187–2199 (2005).

    Google Scholar 

  21. Koch, E. W., Ackerman, J. D., Verduin, J. & van Keulen, M. in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J. & Duarte, C. M.) 193–225 (Springer, 2006).

    Google Scholar 

  22. Gacia, E. & Duarte, C. M. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 52, 505–514 (2001).

    Google Scholar 

  23. Peralta, G., van Duren, L. A., Morris, E. P. & Bouma, T. J. Consequences of shoot density and stiffness for ecosystem engineering benthic macrophytes in flow dominated areas: A hydrodynamic flume study. Mar. Ecol. Prog. Ser. 368, 103–115 (2008).

    Google Scholar 

  24. Yang, S. L., Shi, B. W., Bouma, T. J., Ysebaert, T. & Luo, X. X. Wave attenuation at a salt-marsh margin: A case study of an exposed coast on the Yangtze estuary. Estuar. Coasts 35, 169–182 (2012).

    Google Scholar 

  25. Furukawa, K., Wolanski, E. & Mueller, H. Currents and sediment transport in mangrove forests. Estuar. Coast. Shelf Sci. 44, 301–310 (1997).

    CAS  Google Scholar 

  26. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C. & Silliman, B. R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Google Scholar 

  27. Costanza, R. et al. The value of the world´s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    CAS  Google Scholar 

  28. Duarte, C. M. & Cebrián, J. The fate of marine autotrophic production. Limnol. Oceanogr. 41, 1758–1766 (1996).

    CAS  Google Scholar 

  29. Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles 24, GB4026 (2010).

    Google Scholar 

  30. Mateo, M. A., Romero, J., Pérez, M., Littler, M. M. & Littler, D. S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar. Coast. Shelf Sci. 44, 103–110 (1997).

    Google Scholar 

  31. Ward, L. G., Zaprowski, B. J., Trainer, K. D. & Davis, P. T. Stratigraphy, pollen history and geochronology of tidal marshes in a Gulf of Maine estuarine system: Climatic and relative sea level impacts. Mar. Ecol. 256, 1–17 (2008).

    Google Scholar 

  32. Filho, P. W. M. et al. Holocene coastal evolution and facies model of the Braganca macrotidal flat on the Amazon mangrove coast, northern Brazil. J. Coast. Res. 39, 306–31 (2006).

    Google Scholar 

  33. Enríquez, S., Duarte, C. M. & Sand-Jensen, K. Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C: N:P content. Oecologia 94, 457–471 (1993).

    Google Scholar 

  34. Duarte, C. M. et al. Root production and belowground seagrass biomass. Mar. Ecol. Prog. Ser. 171, 97–108 (1998).

    Google Scholar 

  35. Breithaupt, J. L., Smoak, J. M., Smith, T. J. III, Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Glob. Biogeochem. Cycles 26, GB3011 (2012).

    Google Scholar 

  36. Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).

    CAS  Google Scholar 

  37. Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    CAS  Google Scholar 

  38. Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011).

    CAS  Google Scholar 

  39. Fourqurean, J. W. et al. Seagrass ecosystems as a significant global carbon stock. Nature Biogeosci. 5, 505–509 (2012).

    CAS  Google Scholar 

  40. Menéndez, M. & Woodworth, P. L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011 (2010).

    Google Scholar 

  41. Izaguirre, C., Mendez, F. J., Menendez, M., Luceño, A & Losada, I. J. Extreme wave climate variability southern Europe using satellite data. J. Geophys. Res. 115, C04009 (2010).

    Google Scholar 

  42. Menéndez, M., Mendez, F. J., Losada, I. J. & Graham, N. E. Variability of extreme wave heights in the northeast Pacific Ocean based on buoy measurements. Geophys. Res. Lett. 35, L22607 (2008).

    Google Scholar 

  43. Hemer, M. A., Church, J. A. & Hunter, J. R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 30, 475–491 (2010).

    Google Scholar 

  44. Izaguirre, C., Mendez, F. J., Menendez, M. & Losada, I. J. Global extreme wave height variability based on datellite data. Geophys. Res. Lett. 38, L10607 (2011).

    Google Scholar 

  45. Young, R. R., Zieger, S. & Babanin. A. V. Global trends in wind speed and wave height. Science 332, 451–455 (2011).

    CAS  Google Scholar 

  46. Church, J. A. & White, J. W. Sea level rise from the late 19th to early 21st century. Surv. Geophys. 32, 585–602 (2011).

    Google Scholar 

  47. Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  48. Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009).

    CAS  Google Scholar 

  49. Seneviratne, S. I. et al. in Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) (eds Field, C. B. et al.) Ch. 3 (IPCC, Cambridge Univ. Press, 2012).

    Google Scholar 

  50. Méndez, F. J., Losada, I. J. & Losada, M. A. Hydrodynamics induced by wind waves in a vegetation field. J. Geophys. Res. Oceans 104, 18383–18396 (1999).

    Google Scholar 

  51. Mazda, Y. et al. Drag force due to vegetation in mangrove swamps. Mangroves Salt Marsh 1, 193–199 (1997).

    Google Scholar 

  52. Ghisalberti, M. & Nepf, H. Shallow flows over a permeable medium: The hydrodynamics of submerged aquatic canopies. Transport Porous Med. 78, 385–402 (2009).

    Google Scholar 

  53. Chen, Z., Ortiz, A., Zong, L. & Nepf, H. The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation. Wat. Resour. Res. 8, W09517 (2012).

    Google Scholar 

  54. Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge Univ. Press, 2000).

    Google Scholar 

  55. Tanino, Y. & Nepf, H. Laboratory investigation oF mean drag in a random array of rigid, emergent cylinders. J. Hydraul. Eng. 134, 4–41 (2008).

    Google Scholar 

  56. Bryan, K. R., Tay, H. W., Pilditch, C. A., Lundquist, C. J. & Hunt, H. L. The effects of seagrass (Zostera muelleri) on boundary-layer hydrodynamics in Whangapoua Estuary, New Zealand. J. Coast. Res. 50, 668–672 (2007).

    Google Scholar 

  57. Vo-Luong, P. & Massel, S. Energy dissipation in non-uniform mangrove forests of arbitrary depth. J. Mar. Syst. 74, 603–622 (2008).

    Google Scholar 

  58. Losada, I. J., Losada, M. A. & Martin, F. Experimental study of wave-induced flow in porous media. Coast. Eng. 26, 77–98 (1995).

    Google Scholar 

  59. Mazarrasa, I., Marbà, N., Hendriks, I. E., Losada, I. J. & Duarte, C. M. Estimates of Average Sediment Accretion Rates in Vegetated Coastal Habitats Around the World (Digital CSIC, 2013); http://hdl.handle.net/10261/77396

  60. Turner, W. R., Oppenheimer, M. & Wilcove, D. S. A force to fight global warming. Nature 462, 278–279 (2009).

    CAS  Google Scholar 

  61. Duarte, C. M., Dennison, W. C., Orth, R. J. W. & Carruthers, T. J. B. The charisma of coastal ecosystems: Addressing the imbalance. Estuar. Coasts 31, 233–238 (2008).

    Google Scholar 

  62. Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).

    Google Scholar 

  63. Lovelock, C. E., Ruess, R. W. & Feller, I. C. CO2 efflux from cleared mangrove peat. PLoS ONE 6, e21279 (2011).

    CAS  Google Scholar 

  64. Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl Acad. Sci. USA 109, 14369–14374 (2012).

    Google Scholar 

  65. Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    CAS  Google Scholar 

  66. Report of the Conference of the Parties on its Fifteenth Session, Held in Copenhagen from 7 to 19 December 2009 (UNFCCC, 2009).

  67. Arnaud-Haond, S. et al. Genetic recolonization of mangrove: Genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange. Mar. Ecol. Prog. Ser. 390, 129–135 (2009).

    Google Scholar 

  68. An, S. et al. China's natural wetlands: Past problems, current status, and future challenges. Ambio 36, 335–342 (2007).

    CAS  Google Scholar 

  69. http://www.globalrestorationnetwork.org/ecosystems/coastal/estuaries-marshes-mangroves/case-studies

  70. Sintes, T., Marbà, N., Duarte, C. M. & Kendrick. G. A. Non-linear processes in seagrass colonisation explained by simple clonal growth rules. Oikos 108, 165–175 (2005).

    Google Scholar 

  71. McGlathery, K. J. et al. Recovery trajectories during state change from bare sediment to eelgrass dominance. Mar. Ecol. Prog. Ser. 448, 209–221 (2012).

    Google Scholar 

  72. Osland, M. J. et al. Ecosystem development after mangrove wetland creation: Plant-soil change across a 20-year chronosequence. Ecosystems 15, 848–866 (2012).

    CAS  Google Scholar 

  73. Craft, C. et al. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecol. Appl. 13, 1417–1432 (2003).

    Google Scholar 

  74. Irving, A. D., Connell, S. D. & Russell, B. D. Restoring coastal plants to improve global carbon storage: Reaping what we sow. PLoS ONE 6, e18311 (2011).

    CAS  Google Scholar 

  75. Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82, 377–389 (2009).

    CAS  Google Scholar 

  76. Dierssen, H. M., Zimmerman, R. C., Drake, L. A. & Burdige, D. J. Potential export of unattached benthic macroalgae to the deep sea trough wind-driven Langmuir circulation. Geophys. Res. Lett. 36, L04602 (2009).

    Google Scholar 

  77. Hossain, A. B. M. S., Salleh, A., Boyce, A. N., Chowdhury, P. & Naqiuddin, M. Biodiesel fuel production from algae as renewable energy. Am. J. Biochem. Biotechnol. 4, 250–254 (2008).

    CAS  Google Scholar 

  78. Hussain, K., Nawaz, K., Majeed, A. & Feng, L. Economically effective potential of algae for biofuel production. World Appl. Sci. 9, 1313–1323 (2010).

    CAS  Google Scholar 

  79. Sawyer, D. Climate change, biofuels and eco-social impacts in the Brazilian Amazon and Cerrado. Phil. Trans. R. Soc. B 363, 1747–1752 (2008).

    Google Scholar 

  80. Phalan, B. The social and environmental impacts of biofuel in Asia: An overview. Appl. Energy 86, S21–S29 (2009).

    CAS  Google Scholar 

  81. Eide, A. The Right to Food and the Impact of Liquid Biofuels (Agrofuels) (FAO, 2008).

    Google Scholar 

  82. Harrison, R. & Webb, J. A review of the effect of N fertilizer type on gaseous emissions. Adv. Agron. 73, 65–108 (2001).

    CAS  Google Scholar 

  83. Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).

    Google Scholar 

  84. Feagin, R. Vegetation's role in coastal protection. Science 320, 176–177 (2008).

    CAS  Google Scholar 

  85. Gedan, K. B., Kirwan, M. L., Wolanski, E., Barbier, E. B. & Silliman, B. R. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change 106, 7–29 (2010).

    Google Scholar 

  86. Barbier, E. B. et al. Coastal ecosystem–based management with nonlinear ecological functions and values. Science 319, 321–323 (2008).

    CAS  Google Scholar 

  87. Adams, C. A., Andrews, J. E. & Jickells, T. Nitrous oxide and methane fluxes versus carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci. Total Environ. 434, 240–251 (2012).

    CAS  Google Scholar 

  88. Temmerman, S., Govers, G., Wartel, S. & Meire, P. Modelling estuarine variations in tidal marsh sedimentation: Response to changing sea level and suspended sediment concentrations. Mar. Geol. 212, 1–19 (2004).

    Google Scholar 

  89. Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).

    Google Scholar 

  90. Mangrove planting saves lifes and money in Viet Nam. International Federation of the Red Cross and Red Crescent (19 June 2002); http://go.nature.com/B6ZVwU

  91. Costanza, R. et al. The value of coastal wetlands for hurricane protection. Ambio 37, 241–248 (2008).

    Google Scholar 

  92. Duarte, C. M. et al. Is global ocean sprawl a trojan horse for jellyfish blooms? Front. Ecol. Environ. 11, 91–97 (2013).

    Google Scholar 

  93. Aburto-Oropeza, O. et al. Mangroves in the Gulf of California increase fishery yields. Proc. Natl Acad. Sci. USA 105, 10456–10459 (2008).

    CAS  Google Scholar 

  94. Odum, H. T. Experiments with engineering of marine ecosystems. Publ. Inst. Mar. Sci. Univ. Texas 9, 374–403 (1963).

    Google Scholar 

  95. Mitsch, W. J. & Jørgensen, S. E. Ecological engineering: A field whose time has come. Ecol. Eng. 20, 363–377 (2003).

    Google Scholar 

  96. Fiselier, J. et al. Perspectief Natuurlijke Keringen (Ecoshape, 2011).

    Google Scholar 

  97. Nowak, K. Mangrove and peat swamp forests: Refuge habitats for primates and felids. Folia Primatol. 83, 361–376 (2013).

    Google Scholar 

  98. Cai, W. J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu. Rev. Mar. Sci. 3, 123–45 (2011).

    Google Scholar 

  99. Alongi, D. M. Present state and future of the world's mangrove forests. Environ. Conserv. 29, 331–349 (2002).

    Google Scholar 

  100. Spalding, M., Kainuma, M. & Collins, L. World Atlas of mangroves (Earthscan, 2010).

    Google Scholar 

  101. Charpy-Robaud, C. & Sournia, A. The comparative estimation of phytoplanktonic microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).

    Google Scholar 

  102. http://www.ecoshape.nl/en_GB/delfland-sand-engine.html

Download references

Acknowledgements

This study was funded by the Spanish Ministry of Economy and Competitiveness (projects MEDEICG, CTM2009-07013 and ESTRESX, CTM2012-32603), the EU FP7 projects Opera (contract number 308393) and MedSEA (contract number -265103) and the CSIRO Coastal Carbon Cluster. N.M. was supported by a Gledden Fellowship from the Institute of Advanced Studies of the University of Western Australia, I.H. was supported by a Posdoctoral contract of the JAE programme of CSIC and I.M. by a PhD scholarship of the Government of the Balearic Islands (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Duarte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Coastal protection services of vegetated coastal habitats. (PDF 193 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duarte, C., Losada, I., Hendriks, I. et al. The role of coastal plant communities for climate change mitigation and adaptation. Nature Clim Change 3, 961–968 (2013). https://doi.org/10.1038/nclimate1970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1970

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing