Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

El Niño modulations over the past seven centuries

Abstract

Predicting how the El Niño/Southern Oscillation (ENSO) will change with global warming is of enormous importance to society1,2,3,4. ENSO exhibits considerable natural variability at interdecadal–centennial timescales5. Instrumental records are too short to determine whether ENSO has changed6 and existing reconstructions are often developed without adequate tropical records. Here we present a seven-century-long ENSO reconstruction based on 2,222 tree-ring chronologies from both the tropics and mid-latitudes in both hemispheres. The inclusion of tropical records enables us to achieve unprecedented accuracy, as attested by high correlations with equatorial Pacific corals7,8 and coherent modulation of global teleconnections that are consistent with an independent Northern Hemisphere temperature reconstruction9. Our data indicate that ENSO activity in the late twentieth century was anomalously high over the past seven centuries, suggestive of a response to continuing global warming. Climate models disagree on the ENSO response to global warming3,4, suggesting that many models underestimate the sensitivity to radiative perturbations. Illustrating the radiative effect, our reconstruction reveals a robust ENSO response to large tropical eruptions, with anomalous cooling in the east-central tropical Pacific in the year of eruption, followed by anomalous warming one year after. Our observations provide crucial constraints for improving climate models and their future projections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ENSO reconstruction and verification.
Figure 2: Modulation of ENSO teleconnections.
Figure 3: ENSO response to large tropical eruptions.

Similar content being viewed by others

References

  1. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    Article  CAS  Google Scholar 

  2. Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010).

    Article  Google Scholar 

  3. Guilyardi, E. et al. Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).

    Article  Google Scholar 

  4. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Article  CAS  Google Scholar 

  5. Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nature Clim. Change 1, 114–118 (2011).

    Article  CAS  Google Scholar 

  6. Stevenson, S. et al. Will there be a significant change to El Nino in the 21st century? J. Clim. 25, 2129–2145 (2012).

    Article  Google Scholar 

  7. Urban, F. E., Cole, J. E. & Overpeck, J. T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record. Nature 407, 989–993 (2000).

    Article  CAS  Google Scholar 

  8. Cobb, K. M., Charles, C. D., Cheng, H. & Edwards, R. L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 271–276 (2003).

    Article  CAS  Google Scholar 

  9. Mann, M. E., Bradley, R. S. & Hughes, M. K. Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–762 (1999).

    Article  Google Scholar 

  10. Chowdary, J. S. et al. Inter-decadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007. J. Clim. 25, 1722–1744 (2012).

    Article  Google Scholar 

  11. Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 103, 18567–18589 (1998).

    Article  Google Scholar 

  12. Trenberth, K. E. & Stepaniak, D. P. Indices of El Niño evolution. J. Clim. 14, 1697–1701 (2001).

    Article  Google Scholar 

  13. Ropelewski, C. F. & Jones, P. D. An extension of the Tahiti–Darwin southern oscillation index. Mon. Weath. Rev. 115, 2161–2165 (1987).

    Article  Google Scholar 

  14. Mann, M. E. & Lees, J. Robust estimation of background noise and signal detection in climatic time series. Climatic Change 33, 409–445 (1996).

    Article  Google Scholar 

  15. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

  16. Ault, T. R. et al. Intensified decadal variability in tropical climate during the late 19th century. Geophys. Res. Lett. 36, L08602 (2009).

    Article  Google Scholar 

  17. Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article  Google Scholar 

  18. Gershunov, A., Schneider, N. & Barnett, T. Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: Signal or noise? J. Clim. 14, 2486–2492 (2001).

    Article  Google Scholar 

  19. Emile-Geay, J., Cobb, K., Mann, M. & Wittenberg, A. T. Estimating central equatorial Pacific SST variability over the past millennium. Part 2: Reconstructions and uncertainties. J. Clim. 26, 2329–2352 (2013).

    Article  Google Scholar 

  20. Gershunov, A. & Barnett, T. P. Interdecadal modulation of ENSO teleconnections. Bull. Am. Meteorol. Soc. 79, 2715–2726 (1998).

    Article  Google Scholar 

  21. Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Article  CAS  Google Scholar 

  22. Adams, J. B., Mann, M. E. & Ammann, C. M. Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426, 274–278 (2003).

    Article  Google Scholar 

  23. D’Arrigo, R., Wilson, R. & Tudhope, A. Impact of volcanic forcing on tropical temperatures during the last four centuries. Nature Geosci. 2, 51–56 (2009).

    Article  Google Scholar 

  24. Mann, M. E., Cane, M. A., Zebiak, S. E. & Clement, A. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Clim. 18, 447–456 (2005).

    Article  Google Scholar 

  25. Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R. & Haug, G. H. Volcanoes and ENSO over the past millennium. J. Clim. 21, 3134–3148 (2008).

    Article  Google Scholar 

  26. McGregor, S. & Timmermann, A. The response of ENSO to explosive volcanic eruptions. J. Clim. 24, 2178–2191 (2011).

    Article  Google Scholar 

  27. Siebert, L. & Simkin, T. Volcanoes of the World: An Illustrated Catalog of Holocene Volcanoes and Their Eruptions (Global Volcanism Program Digital Information Series, Smithsonian Institution, GVP-3, 2012).

    Google Scholar 

  28. Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  29. Kang, I-S. Influence of zonal mean flow change on stationary wave fluctuations. J. Atmos. Sci. 47, 141–147 (1990).

    Article  Google Scholar 

  30. Palmer, W. C. Meteorological Drought (US Department of Commerce, 1965).

    Google Scholar 

Download references

Acknowledgements

We thank the researchers who have contributed their tree-ring data for MADA and NADA development, and W. Soon for helpful discussions on the records of sunspot number. This research was financially supported by the National Science Foundation, the National Basic Research Program of China (2012CB955600), the National Oceanic and Atmospheric Administration, the Japan Agency for Marine-Earth Science and Technology, FONDECYT (No.1120965), CONICYT/FONDAP/15110009, CONICET and IAI (CRN2047). This is an International Pacific Research Center/School of Ocean and Earth Science and Technology Contribution (987/8948) and a Lamont–Doherty Earth Observatory Contribution (7699).

Author information

Authors and Affiliations

Authors

Contributions

J.L., S-P.X. and E.R.C. designed the research. J.L., S-P.X., M.S.M., D.A.C. and N.C.J. analysed data. J.L., S-P.X. and N.C.J. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jinbao Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xie, SP., Cook, E. et al. El Niño modulations over the past seven centuries. Nature Clim Change 3, 822–826 (2013). https://doi.org/10.1038/nclimate1936

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1936

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing