Future distribution of tundra refugia in northern Alaska


Climate change in the Arctic is a growing concern for natural resource conservation and management as a result of accelerated warming and associated shifts in the distribution and abundance of northern species. We introduce a predictive framework for assessing the future extent of Arctic tundra and boreal biomes in northern Alaska. We use geo-referenced museum specimens to predict the velocity of distributional change into the next century and compare predicted tundra refugial areas with current land-use. The reliability of predicted distributions, including differences between fundamental and realized niches, for two groups of species is strengthened by fossils and genetic signatures of demographic shifts. Evolutionary responses to environmental change through the late Quaternary are generally consistent with past distribution models. Predicted future refugia overlap managed areas and indicate potential hotspots for tundra diversity. To effectively assess future refugia, variable responses among closely related species to climate change warrants careful consideration of both evolutionary and ecological histories.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Methodological summary.
Figure 2: SDMs for shrews.
Figure 3: Future (2080s) species distribution models for tundra- associated species.
Figure 4: Demographic results.


  1. 1

    Callaghan, T. V. et al. Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. Ambio 33, 404–417 (2004a).

    Article  Google Scholar 

  2. 2

    Callaghan, T. V. et al. Responses to projected changes in climate and UV-B at the species level. Ambio 33, 418–435 (2004b).

    Article  Google Scholar 

  3. 3

    IPCC Climate Change 2007: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2007).

  4. 4

    Harris, S. A. Thermal history of the Arctic Ocean environs adjacent to North America during the last 3.5 Ma and a possible mechanism for the cause of the cold events (major glaciations and permafrost events). Prog. Phys. Geog. 29, 218–237 (2005).

    Article  Google Scholar 

  5. 5

    MacDonald, G. M. Some Holocene palaeoclimatic and palaeoenvironmental perspectives on Arctic/Subarctic climate warming and the IPCC 4th assessment report. J. Quat. Sci. 25, 39–47 (2010a).

    Article  Google Scholar 

  6. 6

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2009).

    Article  Google Scholar 

  7. 7

    Forbes, B. C. et al. High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia. Proc. Natl Acad. Sci. USA 106, 22041–22048 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Fuller, T., Morton, D. P. & Sarkar, S. Incorporating uncertainty about species’ potential distributions under climate change into the selection of conservation areas with a case study from the Arctic Coastal Plain of Alaska. Biol. Conserv. 141, 1547–1559 (2008).

    Article  Google Scholar 

  9. 9

    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2012).

    Article  Google Scholar 

  10. 10

    Hope, A. G., Takebayashi, N., Galbreath, K. E., Talbot, S. L. & Cook, J. A. Temporal, spatial and ecological dynamics of speciation among the amphi-Beringian small mammals. J. Biogeogr. 40, 415–429 (2013).

    Article  Google Scholar 

  11. 11

    Prost, S. et al. Losing ground: Past history and future fate of Arctic small mammals in a changing climate. Glob. Change Biol. 19, 1854–1864 (2013).

    Article  Google Scholar 

  12. 12

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Ann. Rev. Ecol. Evol. Syst. 37, 637–639 (2006).

    Article  Google Scholar 

  13. 13

    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Peterson, A. T. et al. Future projections for Mexican faunas under global change scenarios. Nature 416, 626–629 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  16. 16

    Miller, G. H. et al. Temperature and precipitation history of the Arctic. Quat. Sci. Rev. 29, 1679–1715 (2010).

    Article  Google Scholar 

  17. 17

    Elias, S. A. & Crocker, B. The Bering Land Bridge: A moisture barrier to the dispersal of steppe-tundra biota? Quat. Sci. Rev. 27, 2473–2483 (2008).

    Article  Google Scholar 

  18. 18

    Guthrie, R. D. New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature 441, 207–209 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Bigelow, N. H. et al. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55 °N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. 108, 1–25 (2003).

    Article  Google Scholar 

  20. 20

    Fréchette, B & Vernal, A. Evidence for large-amplitude biome and climate changes in Atlantic Canada during the last interglacial and mid-Wisconsinan periods. Quat. Res. 79, 242–255 (2012).

    Article  Google Scholar 

  21. 21

    Fritz, M. et al. Late glacial and Holocene sedimentation, vegetation, and climate history from easternmost Beringia (northern Yukon Territory, Canada). Quat. Res. 78, 549–560 (2012).

    Article  Google Scholar 

  22. 22

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Article  Google Scholar 

  23. 23

    Hewitt, G. M. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  Google Scholar 

  25. 25

    Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).

    Article  Google Scholar 

  26. 26

    Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Hinzman, L. D. et al. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Climatic Change 72, 251–298 (2005).

    Article  Google Scholar 

  28. 28

    Sahlman, T., Segelbacher, G. & Höglund, J. Islands in the ice: Colonization routes for rock ptarmigan to the Svalbard archipelago. Ecography 32, 840–848 (2009).

    Article  Google Scholar 

  29. 29

    Brochman, C. & Brysting, A. K. The Arctic—an evolutionary freezer? Plant Ecol. Divers. 1, 181–195 (2008).

    Article  Google Scholar 

  30. 30

    Guisan, A. & Thuiller, W. Predicting species distributions: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    Article  Google Scholar 

  31. 31

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Gillson, L., Dawson, T. P., Jack, S. & McGeoch, M. A. Accommodating climate change contingencies in conservation strategy. Trends Ecol. Evol. 28, 135–142 (2012).

    Article  Google Scholar 

  33. 33

    MacDonald, G. M. Global warming and the Arctic: A new world beyond the reach of the Grinnellian niche? J. Experiment. Biol. 213, 855–861 (2010b).

    CAS  Article  Google Scholar 

  34. 34

    Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Roberts, D. R. & Hamann, A. Predicting potential climate change impacts with bioclimate envelope models: A palaeoecological perspective. Glob. Ecol. Biogeogr. 21, 121–133 (2012).

    Article  Google Scholar 

  36. 36

    Brigham-Grette, J. Contemporary Arctic change: A paleoclimate déjà vu? Proc. Natl Acad. Sci. USA 106, 18431–18432 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Carstens, B. C. & Richards, C. L. Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution 61, 1439–1454 (2007).

    Article  Google Scholar 

  38. 38

    Cabeza, M. et al. Combining probabilities of occurrence with spatial reserve design. J. Appl. Ecol. 41, 252–262 (2004).

    Article  Google Scholar 

  39. 39

    Araújo, M. B., Cabeza, M., Thuiller, W., Hannan, L. & Williams, P. H. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob. Change Biol. 10, 1618–1626 (2004).

    Article  Google Scholar 

  40. 40

    Hope, A. G., Speer, K. S., Demboski, J. R., Talbot, S. T. & Cook, J. A. A climate for speciation: Rapid spatial diversification within the Sorex cinereus complex of shrews. Mol. Phylogenet. Evol. 64, 671–684 (2012).

    Article  Google Scholar 

  41. 41

    Lessa, E. P., Cook, J. A. & Patton, J. L. Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proc. Natl Acad. Sci. USA 100, 10331–10334 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Nullmeier, J. & Hallatschek, O. The coalescent in boundary-limited range expansions. Evolution 67, 1307–1320 (2013).

    Google Scholar 

  43. 43

    Hof, A. R., Jansson, R. & Nilsson, C. Future climate change will favour non-specialist mammals in the (sub)Arctics. PLoS ONE 7, e52574 (2012).

    CAS  Article  Google Scholar 

  44. 44

    Harington, C. R. Pleistocene vertebrates of the Yukon Territory. Quat. Sci. Rev. 30, 2341–2354 (2011).

    Article  Google Scholar 

  45. 45

    Cahill, A. E., Aiello-Lammens, M. E., Fisher-Reid, M. C., Hua, X. & Karanewsky, C. J. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).

    Article  Google Scholar 

  46. 46

    Truett, J. C. & Johnson, S. R. (eds) The Natural History of An Arctic Oil Field (Academic, 2000).

  47. 47

    Flint, P. L. et al. Changes in abundance and spatial distribution of geese molting near Teshekpuk Lake, Alaska: Interspecific competition or ecological change? Polar Biol. 31, 549–556 (2007).

    Article  Google Scholar 

  48. 48

    Scheffer, M., Hirota, M.m, Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Hoberg, E. P., Galbreath, K. E., Cook, J. A., Kutz, S. J. & Pottey, L. Northern host-parasite assemblages: History and biogeography on the borderlands of episodic climate and environmental transition. Adv. Parasitol. 79, 1–97 (2012).

    Article  Google Scholar 

  50. 50

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    Article  Google Scholar 

Download references


Statistical analyses were facilitated by the University of Alaska, Fairbanks, Life Science Informatics Portal, http://biotech.inbre.alaska.edu. UAF Life Science Informatics as a core research resource is supported by Grant Number RR016466 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Support was provided by US Geological Survey’s (USGS) Alaska Regional Executive DOI on the Landscape initiative, USGS’s Changing Arctic Ecosystems and Science Support initiatives and Wildlife Program of the USGS Ecosystem Mission Area, and the National Science Foundation (NSF1258010). Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information




A.G.H., J.A.C., E.W. and S.L.T. conceived the study, collected and provided samples, and performed genetic laboratory work. A.G.H and E.W. compiled data, designed and performed analyses. D.C.P. managed aspects of policy and land-use. S.L.T., A.G.H., J.A.C., and D.C.P. secured funding. A.G.H. led writing. All authors discussed the results and implications and contributed to writing the manuscript at all stages.

Corresponding author

Correspondence to Andrew G. Hope.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hope, A., Waltari, E., Payer, D. et al. Future distribution of tundra refugia in northern Alaska. Nature Clim Change 3, 931–938 (2013). https://doi.org/10.1038/nclimate1926

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing