Uncertainty in simulating wheat yields under climate change

Abstract

Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Wheat model–observation comparisons.
Figure 2: Variability in impact model uncertainty.
Figure 3: Sensitivity of simulated and observed wheat to temperature and CO2 change.
Figure 4: Size of model ensembles and impact model uncertainty.

References

  1. 1

    Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  Google Scholar 

  2. 2

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Google Scholar 

  3. 3

    White, J. W., Hoogenboom, G., Kimball, B. A. & Wall, G. W. Methodologies for simulating impacts of climate change on crop production. Field Crops Res. 124, 357–368 (2011).

    Article  Google Scholar 

  4. 4

    Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change 1, 175–177 (2011).

    Article  Google Scholar 

  5. 5

    Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset—A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  6. 6

    Wilby, R. L. et al. A review of climate risk information for adaptation and development planning. Int. J. Clim. 29, 1193–1215 (2009).

    Article  Google Scholar 

  7. 7

    Semenov, M. A., Wolf, J., Evans, L. G., Eckersten, H. & Iglesias, A. Comparison of wheat simulation models under climate change. 2. Application of climate change scenarios. Clim. Res. 7, 271–281 (1996).

    Article  Google Scholar 

  8. 8

    Tao, F., Zhang, Z., Liu, J. & Yokozawa, M. Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agric. Forest Meteorol. 149, 1266–1278 (2009).

    Article  Google Scholar 

  9. 9

    Rosenzweig, C. & Parry, M. L. Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).

    Article  Google Scholar 

  10. 10

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses to climate change. Agric. Forest Meteorol. 150, 1443–1452 (2010).

    Article  Google Scholar 

  12. 12

    Gifford, R. et al. Climate change and Australian wheat yield. Nature 391, 448–449 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Harris, G. R., Collins, M., Sexton, D. M. H., Murphy, J.M. & Booth, B. B. B. Probabilistic projections for twenty first century European climate. Nature Hazards Earth Syst. Sci. 10, 2009–2020 (2010).

    Article  Google Scholar 

  14. 14

    Semenov, M. A. & Stratonovitch, P. Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res. 41, 1–14 (2010).

    Article  Google Scholar 

  15. 15

    Müller, C. Agriculture: Harvesting from uncertainties. Nature Clim. Change 1, 253–254 (2011).

    Article  Google Scholar 

  16. 16

    Palosuo, T. et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 35, 103–114 (2011).

    Article  Google Scholar 

  17. 17

    Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5 (2010).

  18. 18

    Hagedorn, R., Doblas-Reyes, F. J. & Palmer, T. N. The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 57, 219–233 (2005).

    Google Scholar 

  19. 19

    Taylor, S. L., Payton, M. E. & Raun, W. R. Relationship between mean yield, coefficient of variation, mean square error, and plot size in wheat field experiments. Commun. Soil Sci. Plant Anal. 30, 1439–1447 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Hatfield, J. L. et al. Climate impacts on agriculture: Implications for crop production. Agron. J. 103, 351–370 (2011).

    Article  Google Scholar 

  21. 21

    Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nosberger, J. & Ort, D. R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Ewert, F., Porter, J. R. & Rounsevell, M. D. A. Crop models, CO2, and climate change. Science 315, 459–459 (2007).

    CAS  Article  Google Scholar 

  23. 23

    Kimball, B. A. in Handbook of Climate Change and Agroecosystems—Impacts, Adaptation, and Mitigation (eds Hillel, D. & Rosenzweig, C.) 87–107 (Imperial College Press, 2011).

    Google Scholar 

  24. 24

    Amthor, J. S. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Res. 73, 1–34 (2001).

    Article  Google Scholar 

  25. 25

    Asseng, S., Foster, I. & Turner, N. C. The impact of temperature variability on wheat yields. Glob. Change Biol. 17, 997–1012 (2011).

    Article  Google Scholar 

  26. 26

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075 (2007).

    Article  Google Scholar 

  27. 27

    Knutti, R. The end of model democracy? Climatic Change 102, 395–404 (2010).

    Article  Google Scholar 

  28. 28

    Challinor, A. J., Wheeler, T., Hemming, D. & Upadhyaya, H. D. Ensemble yield simulations: Crop and climate uncertainties, sensitivity to temperature and genotypic adaptation to climate change. Clim. Res. 38, 117–127 (2009).

    Article  Google Scholar 

  29. 29

    Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agr. Forest Meteorol. 170, 166–182 (2013).

    Article  Google Scholar 

  30. 30

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22 (2008).

Download references

Author information

Affiliations

Authors

Contributions

S.A., F.E., C.R., J.W.J., K.J.B. and J.L.H. motivated the study; S.A. and F.E. coordinated the study; S.A., F.E., D.W., P.M., D.C. and A.C.R. analysed data; D.C., A.C.R., K.J.B., P.J.T., R.P.R., N.B., B.B., D.R., P.B., P.S., L.H., M.A.S., P.S., C.S., G.O.L., P.K.A., S.N.K., R.C.I., J.W.W., L.A.H., R.G., K.C.K., T.P., J.H., T.O., J.W., I.S., J.E.O., J.D., C.N., S.G., J.I., E.P., T.S., F.T., C.M., K.W., R.G., C.A., I.S., C.B., J.R.W. and A.J.C. carried out crop model simulations and discussed the results; M.T. and S.N.K., provided experimental data; S.A., F.E., C.R. and J.W.J. wrote the paper.

Corresponding authors

Correspondence to S. Asseng or N. Brisson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asseng, S., Ewert, F., Rosenzweig, C. et al. Uncertainty in simulating wheat yields under climate change. Nature Clim Change 3, 827–832 (2013). https://doi.org/10.1038/nclimate1916

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing