The role of satellite remote sensing in climate change studies

  • A Corrigendum to this article was published on 29 October 2013
  • An Erratum to this article was published on 20 December 2013

Abstract

Satellite remote sensing has provided major advances in understanding the climate system and its changes, by quantifying processes and spatio-temporal states of the atmosphere, land and oceans. In this Review, we highlight some important discoveries about the climate system that have not been detected by climate models and conventional observations; for example, the spatial pattern of sea-level rise and the cooling effects of increased stratospheric aerosols. New insights are made feasible by the unparalleled global- and fine-scale spatial coverage of satellite observations. Nevertheless, the short duration of observation series and their uncertainties still pose challenges for capturing the robust long-term trends of many climate variables. We point out the need for future work and future systems to make better use of remote sensing in climate change studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Remote sensing of the climate system.
Figure 2: Upper atmosphere temperature trends between 1979 and 2012 based on MSU data sets.
Figure 3: Map of sea-level trends between 1993 and 2012.

Change history

  • 27 September 2013

    In the version of this Review Article originally published, on page 877, the mass balance of glaciers in the Karakarom region should have been 0.11±0.2 m yr−1. On page 879, in the second paragraph of the ‘Aerosols’ section, the estimated value for the direct radiative forcing should have been −1.0±0.34 W m−2. These errors have now been corrected in the HTML and PDF versions of the Review Article.

  • 02 December 2013

    In the version of this Review Article originally published, the temperature anomaly trends for RSS and UAH in Fig. 2b,c should have been positive values. These errors have now been corrected in the online versions of the Review Article. In the previous corrigendum, the mass balance of glaciers in the Karakarom region should have read 0.11±0.22 m yr-1.

References

  1. 1

    Overpeck, J. T., Meehl, G. A., Bony, S. & Easterling, D. R. Climate data challenges in the 21st century. Science 331, 700 (2011).

    CAS  Google Scholar 

  2. 2

    Yates, H. W. Measurement of the Earth radiation balance as an instrument design problem. Appl. Opt. 16, 297–299 (1977).

    CAS  Google Scholar 

  3. 3

    Li, J., Wang, M. H. & Ho, Y. S. Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Glob. Planet. Change 77, 13–20 (2011).

    Google Scholar 

  4. 4

    Bontemps, S. et al. Revisiting land cover observations to address the needs of the climate modelling community. Biogeosci. Discuss. 8, 7713–7740 (2011).

    Google Scholar 

  5. 5

    Gong, P. et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 34, 2607–2654 (2013).

    Google Scholar 

  6. 6

    Ghent, D., Kaduk, J., Remedios, J. & Balzter, H. Data assimilation into land surface models: The implications for climate feedbacks. Int. J. Remote Sens. 32, 617–632 (2011).

    Google Scholar 

  7. 7

    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).

    Google Scholar 

  8. 8

    Global Climate Observing System Systematic Observation Requirements for Satellite-based Data Products for Climate: 2011 Update GCOS-154 (World Meteorological Organization, 2011).

  9. 9

    Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNeill, S. J. & Glassey, P. J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geog. 33, 183–207 (2009).

    Google Scholar 

  10. 10

    Trenberth, K. & Hurrell, J. How accurate are satellite thermometers—Reply. Nature 389, 342–343 (1997).

    CAS  Google Scholar 

  11. 11

    Karl, T. R. et al. Observation needs for climate information, prediction and application: Capabilities of existing and future observing systems. Procedia Environ. Sci. 1, 192–205 (2010).

    Google Scholar 

  12. 12

    Thies, B. & Bendix, J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives. Meteorol. Appl. 18, 262–295 (2011).

    Google Scholar 

  13. 13

    Pachauri, R. K. & Reisinger, A. (eds) IPCC Climate Change 2007: Synthesis Report (IPCC, 2007).

    Google Scholar 

  14. 14

    Hansen, J. & Lebedeff, S. Global trends of measured surface air temperature. J. Geophys. Res. 92, 345–313 (1987).

    Google Scholar 

  15. 15

    Pielke, R. A. et al. Unresolved issues with the assessment of multidecadal global land surface temperature trends. J. Geophys. Res. 112, D24S08 (2007).

    Google Scholar 

  16. 16

    Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. & Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 15, 1609–1625 (2002).

    Google Scholar 

  17. 17

    Large, W. G. & Yeager, S. G. On the observed trends and changes in global sea surface temperature and air-sea heat fluxes (1984–2006). J. Clim. 25, 6123–6135 (2012).

    Google Scholar 

  18. 18

    Zhang, H. et al. An integrated global observing system for sea surface temperature using satellites and in situ data: Research to operations. Bull. Am. Meteorol. Soc. 90, 31–38 (2009).

    Google Scholar 

  19. 19

    Deser, C., Phillips, A. S. & Alexander, M. A. Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett 37, L10701 (2010).

    Google Scholar 

  20. 20

    Karnauskas, K. B., Seager, R., Kaplan, A., Kushnir, Y. & Cane, M. A. Observed strengthening of the zonal sea surface temperature gradient across the Equatorial Pacific Ocean. J. Clim. 22, 4316–4321 (2010).

    Google Scholar 

  21. 21

    Schwaller, M. R. & Robert Morris, K. A ground validation network for the global precipitation measurement mission. J. Atmos. Ocean. Tech. 28, 301–319 (2011).

    Google Scholar 

  22. 22

    Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967).

    CAS  Google Scholar 

  23. 23

    Spencer, R. W. & Christy, J. R. Precise monitoring of global temperature trends from satellites. Science 247, 1558–1562 (1990).

    CAS  Google Scholar 

  24. 24

    Thorne, P. W., Lanzante, J. R., Peterson, T. C., Seidel, D. J. & Shine, K. P. Tropospheric temperature trends: History of an ongoing controversy. WIREs Clim. Change 2, 66–88 (2011).

    Google Scholar 

  25. 25

    Mears, C. A. & Wentz, F. J. Construction of the remote sensing systems V3. 2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Ocean. Tech. 26, 1040–1056 (2009).

    Google Scholar 

  26. 26

    Xu, J. & Powell, A. Jr Uncertainty of the stratospheric/tropospheric temperature trends in 1979–2008: Multiple Satellite MSU, radiosonde, and reanalysis datasets. Atmos. Chem. Phys. Discuss. 11, 10727–10732 (2011).

    CAS  Google Scholar 

  27. 27

    Christy, J. R., Spencer, R. W. & Norris, W. B. The role of remote sensing in monitoring global bulk tropospheric temperatures. Int. J. Remote Sens. 32, 671–685 (2011).

    Google Scholar 

  28. 28

    Fu, Q., Manabe, S. & Johanson, C. M. On the warming in the tropical upper troposphere: Models versus observations. Geophys. Res. Lett. 38, L15704 (2011).

    Google Scholar 

  29. 29

    Frei, A. A new generation of satellite snow observations for large scale earth system studies. Geog. Compass 3, 879–902 (2009).

    Google Scholar 

  30. 30

    Brown, R. D. & Robinson, D. A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere. 5, 219–229 (2011).

    Google Scholar 

  31. 31

    Bulygina, O., Groisman, P. Y., Razuvaev, V. & Korshunova, N. Changes in snow cover characteristics over Northern Eurasia since 1966. Environ. Res. Lett. 6, 045204 (2011).

    Google Scholar 

  32. 32

    Parkinson, C. & Cavalieri, D. Antarctic sea ice variability and trends. Cryosphere Discuss. 6, 931–956 (2012).

    Google Scholar 

  33. 33

    Liu, J. & Curry, J. A. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Natl Acad. Sci. USA 107, 14987 (2010).

    CAS  Google Scholar 

  34. 34

    Cavalieri, D. & Parkinson, C. Arctic sea ice variability and trends, 1979–2010 Cryosphere. 6, 881–889 (2012).

    Google Scholar 

  35. 35

    Kattsov, V. M. et al. Arctic sea ice change: A grand challenge of climate science. J. Glaciol. 56, 1115–1121 (2011).

    Google Scholar 

  36. 36

    Maslanik, J., Stroeve, J., Fowler, C. & Emery, W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 38, L13502 (2011).

    Google Scholar 

  37. 37

    Horwath, M., Legresy, B., Remy, F., Blarel, F. & Lemoine, J.-M. Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry. Geophys. J. Int. 189, 863–876 (2012).

    Google Scholar 

  38. 38

    Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2012).

    CAS  Google Scholar 

  39. 39

    Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 31, L18401 (2004).

    Google Scholar 

  40. 40

    Joughin, I., Alley, R. B. & Holland, D. M. Ice-sheet response to oceanic forcing. Science 338, 1172–1176 (2012).

    CAS  Google Scholar 

  41. 41

    Scherler, D., Bookhagen, B. & Strecker, M. R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci. 4, 156–159 (2011).

    CAS  Google Scholar 

  42. 42

    Jacob, T., Wahr, J., Pfeffer, W. T. & Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514–518 (2012).

    CAS  Google Scholar 

  43. 43

    Gardelle, J., Berthier, E. & Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nature Geosci. 5, 322–325 (2012).

    CAS  Google Scholar 

  44. 44

    Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Clim. Change 2, 663–667 (2012).

    Google Scholar 

  45. 45

    Cazenave, A. & Remy, F. Sea level and climate: Measurements and causes of changes. WIREs Clim. Change 2, 647–662 (2011).

    Google Scholar 

  46. 46

    Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

    Google Scholar 

  47. 47

    Leuliette, E. W. & Willis, J. K. Balancing the sea level budget. Oceanography 24, 122–129 (2011).

    Google Scholar 

  48. 48

    Fu, L. L., Chelton, D. B., Le Traon, P. Y. & Morrow, R. Eddy dynamics from satellite altimetry. Oceanography 23, 14–25 (2010).

    Google Scholar 

  49. 49

    Willis, J. K., Chambers, D. P., Kuo, C. Y. & Shum, C. K. Global sea level rise: Recent progress and challenges for the decade to come. Oceanography 23, 26–35 (2010).

    Google Scholar 

  50. 50

    Prandi, P., Ablain, M., Cazenave, A. & Picot, N. A new estimation of mean sea level in the Arctic ocean from satellite altimetry. Mar. Geod. 35, 61–81 (2012).

    Google Scholar 

  51. 51

    Hansen, J. et al. Climate simulations for 1880–2003 with GISS modelE. Clim. Dynam. 29, 661–696 (2007).

    Google Scholar 

  52. 52

    Scafetta, N. & West, B. J. Phenomenological solar contribution to the 1900–2000 global surface warming. Geophys. Res. Lett. 33, L05708 (2006).

    Google Scholar 

  53. 53

    Benestad, R. & Schmidt, G. Solar trends and global warming. J. Geophys. Res. 114, D14101 (2009).

    Google Scholar 

  54. 54

    Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C. & Woods, T. N. Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, L07801 (2009).

    Google Scholar 

  55. 55

    Haigh, J. D., Winning, A. R., Toumi, R. & Harder, J. W. An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696–699 (2010).

    CAS  Google Scholar 

  56. 56

    Ineson, S. et al. Solar forcing of winter climate variability in the Northern Hemisphere. Nature Geosci. 4, 753–757 (2011).

    CAS  Google Scholar 

  57. 57

    Lean, J. L. & DeLand, M. T. How does the Sun's spectrum wary? J. Clim. 25, 2555–2560 (2012).

    Google Scholar 

  58. 58

    Matthes, K. Atmospheric science: Solar cycle and climate predictions. Nature Geosci. 4, 735–736 (2011).

    CAS  Google Scholar 

  59. 59

    Quaas, J., Boucher, O., Bellouin, N. & Kinne, S. Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res 113, D05204 (2008).

    Google Scholar 

  60. 60

    Zhao, T. X. P., Loeb, N. G., Laszlo, I. & Zhou, M. Global component aerosol direct radiative effect at the top of atmosphere. Int. J. Remote Sens. 32, 633–655 (2011).

    Google Scholar 

  61. 61

    Cermak, J., Wild, M., Knutti, R., Mishchenko, M. I. & Heidinger, A. K. Consistency of global satellite-derived aerosol and cloud data sets with recent brightening observations. Geophys. Res. Lett. 37, L21704 (2010).

    Google Scholar 

  62. 62

    De Meij, A., Pozzer, A. & Lelieveld, J. Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. Atmos. Environ. 51, 75–85 (2012).

    CAS  Google Scholar 

  63. 63

    Solomon, S. et al. The persistently variable “Background” stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    CAS  Google Scholar 

  64. 64

    Vernier, J. P. et al. Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade. Geophys. Res. Lett. 38, L12807 (2011).

    Google Scholar 

  65. 65

    Penner, J. E., Xu, L. & Wang, M. Satellite methods underestimate indirect climate forcing by aerosols. Proc. Natl Acad. Sci. USA 108, 13404–13408 (2011).

    CAS  Google Scholar 

  66. 66

    Quaas, J., Boucher, O., Bellouin, N. & Kinne, S. Which of satellite- or model-based estimates is closer to reality for aerosol indirect forcing? Proc. Natl Acad. Sci. USA 108, E1099–E1099 (2011).

    CAS  Google Scholar 

  67. 67

    Choi, Y. S., Lindzen, R. S., Ho, C. H. & Kim, J. Space observations of cold-cloud phase change. Proc. Natl Acad. Sci. USA 107, 11211–11216 (2010).

    CAS  Google Scholar 

  68. 68

    Jiang, J. H. et al. Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America. Geophys. Res. Lett. 35, L14804 (2008).

    Google Scholar 

  69. 69

    Allan, R. P. Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere. Meteorol. Appl. 18, 324–333 (2011).

    Google Scholar 

  70. 70

    Dessler, A. E. A determination of the cloud feedback from climate variations over the past decade. Science 330, 1523–1527 (2010).

    CAS  Google Scholar 

  71. 71

    Davies, R. & Molloy, M. Global cloud height fluctuations measured by MISR on Terra from 2000 to 2010. Geophys. Res. Lett. 39, L03701 (2012).

    Google Scholar 

  72. 72

    Taylor, P. C. The role of clouds: An introduction and rapporteur report. Surv. Geophys. 33, 609–617 (2012).

    Google Scholar 

  73. 73

    Schmidt, G. A., Ruedy, R. A., Miller, R. L. & Lacis, A. A. Attribution of the present-day total greenhouse effect. J. Geophys. Res. 115, D20106 (2010).

    Google Scholar 

  74. 74

    Dessler, A. E. & Davis, S. M. Trends in tropospheric humidity from reanalysis systems. J. Geophys. Res. 115 (2010).

  75. 75

    Trenberth, K. E., Fasullo, J. & Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dynam. 24, 741–758 (2005).

    Google Scholar 

  76. 76

    Gu, G. & Adler, R. F. Large-scale, inter-annual relations among surface temperature, water vapour and precipitation with and without ENSO and volcano forcings. Int. J. Climatol. 32, 1782–1791 (2012).

    Google Scholar 

  77. 77

    Shi, L. & Bates, J. J. Three decades of intersatellite-calibrated high-resolution infrared radiation sounder upper tropospheric water vapor. J. Geophys. Res. D Atmos. 116 (2011).

  78. 78

    Jin, X., Li, J., Schmit, T. J. & Goldberg, M. D. Evaluation of radiative transfer models in atmospheric profiling with broadband infrared radiance measurements. Int. J. Remote Sens. 32, 863–874 (2011).

    Google Scholar 

  79. 79

    Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219 (2010).

    CAS  Google Scholar 

  80. 80

    Randel, W. J. Variability and trends in stratospheric temperature and water vapor. Geophys. Monog. Series 190, 123–135 (2010).

    Google Scholar 

  81. 81

    Fueglistaler, S. Stepwise changes in stratospheric water vapor? J. Geophys. Res. D Atmos. 117, D13302 (2012).

    Google Scholar 

  82. 82

    Wentz, F. J., Ricciardulli, L., Hilburn, K. & Mears, C. How much more rain will global warming bring? Science 317, 233–235 (2007).

    CAS  Google Scholar 

  83. 83

    Liepert, B. G. & Previdi, M. Do models and observations disagree on the rainfall response to global warming? J. Clim. 22, 3156–3166 (2009).

    Google Scholar 

  84. 84

    Liu, C. & Allan, R. P. Multisatellite observed responses of precipitation and its extremes to interannual climate variability. J. Geophys. Res. 117, D03101 (2012).

    Google Scholar 

  85. 85

    Gruber, A. & Levizzani, V. Assessment of Global Precipitation Products WCRP-128 50 (World Climate Research Programme, 2008).

    Google Scholar 

  86. 86

    Gebregiorgis, A. S. & Hossain, F. Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Trans. Geosci. Remote Sens. 51, 704–718 (2013).

    Google Scholar 

  87. 87

    Wang, B., Liu, J., Kim, H. J., Webster, P. J. & Yim, S. Y. Recent change of the global monsoon precipitation (1979–2008). Clim. Dynam. 39, 1123–1135 (2012).

    Google Scholar 

  88. 88

    Trenberth, K. E., Moore, B., Karl, T. R. & Nobre, C. Monitoring and prediction of the earth's climate: A future perspective. J. Clim. 19, 5001–5008 (2006).

    Google Scholar 

  89. 89

    Henson, S. A. et al. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7, 621–640 (2010).

    CAS  Google Scholar 

  90. 90

    Douglas, B. C. Global sea rise: A redetermination. Surv. Geophys. 18, 279–292 (1997).

    Google Scholar 

  91. 91

    Kahn, B. H. et al. Temperature and water vapor variance scaling in global models: Comparisons to satellite and aircraft data. J. Atmos. Sci. 68, 2156–2168 (2011).

    Google Scholar 

  92. 92

    Datla, R., Kessel, R., Smith, A., Kacker, R. & Pollock, D. Review Article: Uncertainty analysis of remote sensing optical sensor data: Guiding principles to achieve metrological consistency. Int. J. Remote Sens. 31, 867–880 (2010).

    Google Scholar 

  93. 93

    Mears, C. A. & Wentz, F. J. The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science 309, 1548 (2005).

    CAS  Google Scholar 

  94. 94

    Mei, L. et al. Validation and analysis of aerosol optical thickness retrieval over land. Int. J. Remote Sens. 33, 781–803 (2012).

    Google Scholar 

  95. 95

    Screen, J. Sudden increase in Antarctic sea ice: Fact or artifact? Geophys. Res. Lett. 38, L13702 (2011).

    Google Scholar 

  96. 96

    Ohring, G., Wielicki, B., Spencer, R., Emery, B. & Datla, R. Satellite instrument calibration for measuring global climate change: Report of a workshop. Bull. Am. Meteorol. Soc. 86, 1303–1313 (2005).

    Google Scholar 

  97. 97

    Li, Z. et al. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys 27, 2755–2770 (2009).

    Google Scholar 

  98. 98

    Crow, W. T. et al. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 50, 1–20 (2012).

    Google Scholar 

  99. 99

    Liu, Y., Liu, R. & CHen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2010) maps from combined AVHRR and MODIS data J. Geophys. Res. 117, G04003 (2012).

    Google Scholar 

  100. 100

    Knapp, K. R. et al. Globally Gridded Satellite observations for climate studies. Bull. Am. Meteorol. Soc. 92, 893–907 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-tech Research and Development Program of China (Grant No. 2009AA12200101) and the National Key Basic Research Program of China (Grant No. 2010CB530300).

Author information

Affiliations

Authors

Contributions

J.Y. and P.G. designed the framework of the Review. All authors contributed to writing.

Corresponding author

Correspondence to Peng Gong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains supplementary tables 1-3 and additional references for table S1. (PDF 1110 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, J., Gong, P., Fu, R. et al. The role of satellite remote sensing in climate change studies. Nature Clim Change 3, 875–883 (2013). https://doi.org/10.1038/nclimate1908

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing