Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

Abstract

Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of feedback loops and model set-up.
Figure 2: Simulated and observed concentrations.
Figure 3: Future emissions.
Figure 4: Future concentrations, radiative forcing and global mean temperature.
Figure 5: Feedback factors.

Similar content being viewed by others

References

  1. Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Article  Google Scholar 

  2. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).

    Article  CAS  Google Scholar 

  3. Hirsch, A. et al. Inverse modelling estimates of the global nitrous oxide surface flux from 1998–2001. Glob. Biogeochem. Cycles 20, GB1008 (2006).

    Article  Google Scholar 

  4. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geosci. 2, 659–662 (2009).

    Article  CAS  Google Scholar 

  5. Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 7 (Cambridge Univ. Press, 2007).

    Google Scholar 

  6. Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nature Geosci. 3, 525–532 (2010).

    Article  CAS  Google Scholar 

  7. Xu-ri Prentice, I. C., Spahni, R. & Niu, H. S. Modelling terrestrial nitrous oxide emissions and implications for climate feedback. New Phytol. 2, 472–88 (2012).

    Article  Google Scholar 

  8. Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2 . Nature 475, 214–216 10.1038/nature10176(2011).

    Article  CAS  Google Scholar 

  9. Khalil, M. A. K. & Rasmussen, R. A. Climate-induced feedbacks for the global cycles of methane and nitrous oxide. Tellus B 41B, 554–559 10.1111/j.1600-0889.1989.tb00141.x(1989).

    Article  CAS  Google Scholar 

  10. Torn, M. S. & Harte, J. Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming. Geophys. Res. Lett. 33, L10703 (2006).

    Article  Google Scholar 

  11. Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

    Article  CAS  Google Scholar 

  12. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

    Article  CAS  Google Scholar 

  13. Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  14. Strassmann, K. M., Joos, F. & Fischer, G. Simulating effects of land use changes on carbon fluxes: Past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B 60, 583–603 (2008).

    Article  Google Scholar 

  15. Wania, R., Ross, I. & Prentice, I. C. Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Glob. Biogeochem. Cycles 23 10.1029/2008GB003413(2009).

  16. Xu-Ri, & Prentice, I. C. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Glob. Change Biol. 14, 1745–1764 (2008).

    Article  Google Scholar 

  17. Spahni, R., Joos, F., Stocker, B. D., Steinacher, M. & Yu, Z. C. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the twenty first century. Clim. Past Discuss. 8, 5633–5685 (2012).

    Article  Google Scholar 

  18. Zürcher, S., Spahni, R., Joos, F., Steinacher, M. & Fischer, H. Impact of an 8.2-kyr-like event on methane emissions in northern peatlands. Biogeosci. Discuss. 9, 13243–13286 (2012).

    Article  Google Scholar 

  19. Spahni, R. et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8, 1643–1665 (2011).

    Article  CAS  Google Scholar 

  20. Stocker, B. D., Strassmann, K. & Joos, F. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: Analyses with a process-based model. Biogeosciences 8, 69–88 (2011).

    Article  CAS  Google Scholar 

  21. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

  22. MacFarling Meure, C. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, L14810 (2006).

    Article  Google Scholar 

  23. Lamarque, J-F. et al. Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Climatic Change 109, 191–212 (2011).

    Article  CAS  Google Scholar 

  24. Zaehle, S., Ciais, P., Friend, A. D. & Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geosci. 4, 601–605 (2011).

    Article  CAS  Google Scholar 

  25. Van Vuuren, D. P. et al. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Climatic Change 109, 95–116 (2011).

    Article  Google Scholar 

  26. Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57 (2011).

    Article  CAS  Google Scholar 

  27. De Klein, C. et al. in IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, H., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 11 (IGES, 2006).

    Google Scholar 

  28. Müller, S. A., Joos, F., Edwards, N. R. & Stocker, T. F. Water mass distribution and ventilation timescales in a cost-efficient, three-dimensional ocean model. J. Clim. 19, 5479–5499 (2006).

    Article  Google Scholar 

  29. Ritz, S. P., Stocker, T. F. & Joos, F. A coupled dynamical ocean energy balance atmosphere model for paleoclimate studies. J. Clim. 24, 349–375 (2011).

    Article  Google Scholar 

  30. Prentice, I. C. et al. Modelling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25, GB3005 (2011).

    Article  Google Scholar 

  31. Suntharalingam, P. et al. Quantifying the impact of anthropogenic nitrogen deposition on oceanic nitrous oxide. Geophys. Res. Lett. 39, L07605 (2012).

    Article  Google Scholar 

  32. Joos, F. et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob. Biogeochem. Cycles 15, 891–907 (2001).

    Article  CAS  Google Scholar 

  33. Langenfelds, R. et al. in Baseline Atmospheric Program Australia (eds Cainey, J., Derek, N. & Krummel, P.) 55–56 (Bureau of Meteorology and CSIRO Atmospheric Research, 2004).

    Google Scholar 

  34. Buizert, C. et al. Gas transport in firn: Multiple-tracer characterization and model intercomparison for NEEM, Northern Greenland. Atmos. Chem. Phys. 12, 4259–4277 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge K. Riahi for providing RCP8.5 data, J-F. Lamarque for providing N-deposition data, climate modelling centres participating in CMIP5 as listed in Supplementary Table S1 for providing climate input data, and C2SM at ETHZ for processing and sharing the CMIP5 data. We thank P. Friedlingstein and Th. Stocker for discussions and inputs. We appreciate support by the Swiss National Science Foundation through the National Centre of Competence in Research Climate (NCCR) and the grant to the division of Climate and Environmental Physics, and by the European Commission through the FP7 project CARBOCHANGE (grant no. 264879) and Past4Future (grant no. 243908).

Author information

Authors and Affiliations

Authors

Contributions

B.D.S. and R.R. share equal contributions to this work. B.D.S. prepared the model set-up, conducted the offline simulations, compiled the figures and wrote the text. R.R. prepared and conducted the online simulations, and delivered inputs for the model set-up and results analysis. R.S. and M.S. contributed substantially to the LPX model development and the simulations. S.Z. and L.B. provided N-fertilization and N2O input data and technical advice. X-R. contributed substantially to the LPX model development. I.C.P. and F.J. initiated the study, guided the concept and edited the manuscript text. F.J. organized funding for B.S., R.R., R.S. and M.S.

Corresponding author

Correspondence to Benjamin D. Stocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stocker, B., Roth, R., Joos, F. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Clim Change 3, 666–672 (2013). https://doi.org/10.1038/nclimate1864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1864

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene