Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retrospective prediction of the global warming slowdown in the past decade

Abstract

Despite a sustained production of anthropogenic greenhouse gases, the Earth’s mean near-surface temperature paused its rise during the 2000–2010 period1. To explain such a pause, an increase in ocean heat uptake below the superficial ocean layer2,3 has been proposed to overcompensate for the Earth’s heat storage. Contributions have also been suggested from the deep prolonged solar minimum4, the stratospheric water vapour5, the stratospheric6 and tropospheric aerosols7. However, a robust attribution of this warming slowdown has not been achievable up to now. Here we show successful retrospective predictions of this warming slowdown up to 5 years ahead, the analysis of which allows us to attribute the onset of this slowdown to an increase in ocean heat uptake. Sensitivity experiments accounting only for the external radiative forcings do not reproduce the slowdown. The top-of-atmosphere net energy input remained in the [0.5–1] W m−2 interval during the past decade, which is successfully captured by our predictions. Most of this excess energy was absorbed in the top 700 m of the ocean at the onset of the warming pause, 65% of it in the tropical Pacific and Atlantic oceans. Our results hence point at the key role of the ocean heat uptake in the recent warming slowdown. The ability to predict retrospectively this slowdown not only strengthens our confidence in the robustness of our climate models, but also enhances the socio-economic relevance of operational decadal climate predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ability to capture the warming slowdown.
Figure 2: Earth’s heat budget.
Figure 3: Ability to predict the ocean heat storage.

Similar content being viewed by others

References

  1. Knight, J. Global oceans: Do global temperature trends over the last decade falsify climate predictions? Bull. Am. Meteorol. Soc. 90, S56–S57 (2009).

    Google Scholar 

  2. Katsman, C. A. & van Oldenborgh, G. J. Tracing the upper ocean’s missing heat. Geophys. Res. Lett. 38, L14610 (2011).

    Google Scholar 

  3. Meehl, G. A., Arblaster, J. M., Fasullo, J. Y., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  4. Hansen, J., Sato, M., Kharecha, P. & von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 11, 13421–13449 (2011).

    Article  CAS  Google Scholar 

  5. Solomon, S. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    Article  CAS  Google Scholar 

  6. Solomon, S. The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    Article  CAS  Google Scholar 

  7. Kaufmann, R. K., Kauppib, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 790–793 (2011).

    Article  Google Scholar 

  8. Trenberth, K. E. & Fasullo, J. T. Tracking earth’s energy. Science 328, 316–317 (2010).

    Article  CAS  Google Scholar 

  9. Smith, D. et al. Improved surface temperature prediction for the coming decade from a global climate model. Science 317, 796–799 (2007).

    Article  CAS  Google Scholar 

  10. Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueth, L. & Roeckner, E. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453, 84–88 (2008).

    Article  CAS  Google Scholar 

  11. Pohlmann, H., Jungclaus, J. H., Kohl, A., Stammer, D. & Marotzke, J. Initializing decadal climate predictions with the GECCO oceanic synthesis: Effects on the North Atlantic. J. Clim. 22, 3926–3938 (2009).

    Article  Google Scholar 

  12. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).

    Article  Google Scholar 

  13. Hazeleger, W. et al. EC-Earth V2.2: Description and validation of a new seamless Earth system prediction model. Clim. Dyn. 39, 2611–2629 (2012).

    Article  Google Scholar 

  14. Du, H. et al. Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Clim. Dyn. 39, 2013–2023 (2012).

    Article  Google Scholar 

  15. Mogensen, K. S., Balmaseda, M. A. & Weaver, A. T. The NEMOVAR Ocean Data Assimilation As Implemented in the ECMWF Ocean Analysis for System 4 Technical Memorandum 668 (ECMWF, 2011).

  16. Balmaseda, M. A., Mogensen, K. S. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis ORAS4. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2063 (2012).

  17. Uppala, S et al. ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2000. ECMWF Newsl. 101, 2–21 (2004).

    Google Scholar 

  18. Dee, D. P. et al. The era-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  19. Loeb, N. G. et al. Observed changes in the top-of-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geosci. 5, 110–113 (2012).

    Article  CAS  Google Scholar 

  20. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–329 (2009).

    Article  Google Scholar 

  21. Lyman, J. M. et al. Robust warming of the global upper ocean. Nature 465, 334–337 (2010).

    Article  CAS  Google Scholar 

  22. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  23. Brodeau, L., Barnier, B., Treguier, A. M., Penduff, T. & Gulev, S. An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model. 31, 88–104 (2010).

    Article  Google Scholar 

  24. Smith, T. M., Reynolds, R. W. & Lawrimore, T. C. P. H. Improvements to NOAAs historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  25. Meier, W., Fetterer, F., Knowles, K., Savoie, M. & Brodzik, M. J. Sea Ice Concentrations From Nimbus-7 SMMR And DMSP SSM/I Passive Microwave Data (National Snow and Ice Data Center, 2006).

  26. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 1984–2012 (2003).

    Article  Google Scholar 

  27. Loeb, N. G. et al. Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  28. Ferry, N. et al. Mercator global Eddy permitting ocean reanalysis GLORYS1V1: Description and results. Mercator Ocean Quart. Newsl. 36, 15–27 (2010).

    Google Scholar 

  29. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. A. Balmaseda and M. Davis for their comments on the manuscript, J. Garcı´a-Serrano for the OHC from the Ishii and Kimoto29 reanalysis, N. Ferry and G. Garric for the GLORYS2v1 reanalysis, and O. Mula-Valls and D. Manubens-Gil for their technical support. This work was supported by the EU-funded SPECS (FP7-ENV-2012-308378), QWeCI (FP7-ENV-2009-1-243964), CLIM-RUN (FP7-ENV-2010-1-265192), the MICINN-funded RUCSS (CGL2010-20657) projects, the Catalan Government and the Red Española de Supercomputación (RES).

Author information

Authors and Affiliations

Authors

Contributions

V.G. and F.J.D-R. designed the research and performed the analyses. M.A. ran the experiments. V.G., F.J.D-R. and I.A-B. interpreted the results and wrote the article.

Corresponding author

Correspondence to Virginie Guemas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guemas, V., Doblas-Reyes, F., Andreu-Burillo, I. et al. Retrospective prediction of the global warming slowdown in the past decade. Nature Clim Change 3, 649–653 (2013). https://doi.org/10.1038/nclimate1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1863

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing