Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coastal adaptation with ecological engineering

Abstract

The use of combined approaches to coastal adaptation in lieu of a single strategy, such as sea-wall construction, allows for better preparation for a highly uncertain and dynamic coastal environment. Although general principles such as mainstreaming and no- or low-regret options exist to guide coastal adaptation and provide the framework in which combined approaches operate, few have examined the interactions, synergistic effects and benefits of combined approaches to adaptation. This Perspective provides three examples of ecological engineering — marshes, mangroves and oyster reefs — and illustrates how the combination of ecology and engineering works.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Combining strategies for coastal adaptation.
Figure 2: Economic evaluation of an oyster reef restoration project in an estuary in the northern Gulf of Mexico.

References

  1. 1

    Cheong, S. Guest editorial on coastal adaptation. Climatic Change 106, 1–4 (2011).

    Article  Google Scholar 

  2. 2

    Brown, C. The end of reliability. J. Water Res. Plan. Manage. 136, 143–145 (2010).

    Article  Google Scholar 

  3. 3

    Matthews, J. H. & Wickel, A. J. Embracing uncertainty in freshwater climate change adaptation: A natural history approach. Clim. Dev. 1, 269–279 (2009).

    Article  Google Scholar 

  4. 4

    IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

  5. 5

    IPCC in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C.B. et al.) 1–19 (Cambridge Univ. Press, 2012).

  6. 6

    Nicholls, R. J., Wong, P. P., Burkett, V., Woodroffe, C. D. & Hay, J. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment. Sustain. Sci. 3, 89–102 (2008).

    Article  Google Scholar 

  7. 7

    Harvey, N., Clarke, B., Pelton, N. & Mumford, T. in Sustainable Coastal Management and Climate Adaptation: Global Lessons from Regional Approaches in Australia (eds Kenchington, R., Stocker, L. & Wood, D.) Ch. 4 (CRC, 2012).

    Google Scholar 

  8. 8

    Martinez, G., Bizikova, L., Blobel, D. & Swart R. in Global Change and Baltic Coastal Zones Vol. 1 (eds Schernewski, G., Hofstede, J. & Neumann, T.) Ch. 15 (Springer, 2011).

    Google Scholar 

  9. 9

    Ibrahim, H. S. & Shaw, D. Assessing progress toward integrated coastal zone management: Some lessons from Egypt. Ocean Coast. Manage. 58, 26–35 (2012).

    Article  Google Scholar 

  10. 10

    World Bank Climate Change Team in Mainstreaming Adaptation to Climate Change in Agriculture and Natural Resources Management Projects Guidance Note 6 (World Bank, 2012); available via http://go.nature.com/oT4v7p

  11. 11

    Heltberg, R., Siegel, P. B. & Jorgensen, S. L. Addressing human vulnerability to climate change: Toward a 'no-regrets' approach. Glob. Environ Change 19, 89–99 (2009).

    Article  Google Scholar 

  12. 12

    Jones, H. P., Hole, D. G. & Zavaleta E. S. Harnessing nature to help people adapt to climate change. Nature Clim. Change 2, 504–509 (2012).

    Article  Google Scholar 

  13. 13

    Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. EUR-Lex 35, L206 (1992).

  14. 14

    Council directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. EUR-Lex 53, L20 (2010).

  15. 15

    Pilarczyk, K. W. Dikes and Revetments: Design, Maintenance and Safety Assessment (A. A. Balkema, 1998).

    Google Scholar 

  16. 16

    Pilkey, O. H. & Wright, H. L. Seawalls versus beaches. J. Coastal Res. 4, 41–64 (1988).

    Google Scholar 

  17. 17

    Hall, M. J. & Pilkey, O. H. Effects of hard stabilization on dry beach width for New Jersey. J. Coastal Res. 7, 771–785 (1991).

    Google Scholar 

  18. 18

    Matthews, J. H., Wickel, B. A. & Freeman, S. Converging currents in climate-relevant conservation: Water, infrastructure, and institutions. PLoS Biology 9, e1001159 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Mitsch, W. J. & Jørgensen, S. E. Ecological engineering: A field whose time has come. Ecol. Eng. 20, 363–377 (2003).

    Article  Google Scholar 

  20. 20

    Roy, E. D., Martin, J. F., Irwin, E. G., Conroy, J. D. & Culver, D. A. Living within dynamic social-ecological freshwater systems: System parameters and the role of ecological engineering. Ecol. Eng. 37, 1661–1672 (2011).

    Article  Google Scholar 

  21. 21

    Halpern, B. S., Silliman, B. R., Olden, J., Bruno, J. & Bertness, M. D. Incorporating positive interactions in aquatic restoration and conservation. Front. Ecol. Environ. 5, 153–160 (2007).

    Article  Google Scholar 

  22. 22

    Campbell, A. et al. in Review of the Literature on the Links between Biodiversity and Climate Change: Impacts, Adaptation and Mitigation (eds Campbell, A. et al.) 49–87 (Secretariat of the Convention on Biological Diversity, 2009).

    Google Scholar 

  23. 23

    Gedan, K. & Silliman, B. R. Using facilitation theory to enhance mangrove restoration. Ambio 38, 109 (2009).

    Article  Google Scholar 

  24. 24

    Van der Heide, T. et al. Three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336, 1432–1434 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Borsje, B. W. et al. How ecological engineering can serve in coastal protection. Ecol. Eng. 37, 113–122 (2011).

    Article  Google Scholar 

  26. 26

    Van Slobbe, E. et al. Building with nature: In search of resilient storm surge protection strategies. Nat. Hazards 65, 947–966 (2012).

    Article  Google Scholar 

  27. 27

    Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).

    Article  Google Scholar 

  28. 28

    Silliman, B. R. et al. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 11234–11239 (2012).

    CAS  Article  Google Scholar 

  29. 29

    Möller, I. & Spencer, T. Wave dissipation over macro-tidal saltmarshes: Effects of marsh edge typology and vegetation change. J. Coastal Res. SI36, 506–521 (2002).

    Article  Google Scholar 

  30. 30

    Minello, K. A., Weintstein, M. & Hays, C. Salt marshes as nurseries for nekton: Testing hypotheses on density, growth and survival through meta analysis. Mar. Ecol. Prog. Ser. 236, 39–59 (2003).

    Article  Google Scholar 

  31. 31

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  32. 32

    Mcleod, E. et al. A blueprint for blue carbon: Towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  33. 33

    Bertness, M. D., Ewanchuk, P. J. & Silliman, B. R. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl Acad. Sci. USA 99, 1395–1398 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Wong, P. P. in Coastal Zones and Climate Change (eds Michel, D. & Pandya, A.) 69–83 (Stimson, 2010).

    Google Scholar 

  35. 35

    Cochard, R. et al. The 2004 tsunami in Aceh and Southern Thailand: A review on coastal ecosystems, wave hazards and vulnerability. Perspect. Plant Ecol. 10, 3–40 (2008).

    Article  Google Scholar 

  36. 36

    Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast Shelf Sci. 76, 1–13 (2008).

    Article  Google Scholar 

  37. 37

    Tanaka, N. Vegetation bioshields for tsunami mitigation: Review of effectiveness, limitations, construction, and sustainable development. Landsc. Ecol. Eng. 5, 71–79 (2009).

    Article  Google Scholar 

  38. 38

    McLeod, E. & Salm, R. V. Managing Mangroves for Resilience to Climate Change (IUCN, 2006).

    Google Scholar 

  39. 39

    McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Article  Google Scholar 

  40. 40

    Huxham, M. et al. Intra and inter-specific facilitation in mangroves may increase resilience to climate change threats. Phil. Trans. R. Soc. B 365, 2127–2135 (2010).

    Article  Google Scholar 

  41. 41

    Sengupta, S. In silt, Bangladesh sees potential shield against sea-level rise. New York Times (19 March 2009); available via http://go.nature.com/5GylEh

  42. 42

    Reker, J. et al. Deltas on the Move: Making Deltas Cope with the Effects of Climate Change Report 001/2006 (National Research Programme Climate Change Spatial Planning, 2006).

    Google Scholar 

  43. 43

    Chua, G. Saving Tekong's coastal greenery. The Straits Times (12 May 2010); available via http://go.nature.com/hRe77s

  44. 44

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Schmitt, K., Albers, T., Pham, T. T. & Dinh, S. C. Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. J. Coastal Conserv. http://dx.doi.org/10.1007/s11852-013-0253-4 (2013).

  46. 46

    Winterwerp, J. C., Erftemeijer, P. L. A., Suryadiputra, N., van Eijk, P. & Zhang, L. Defining eco-morphodynamic requirements for rehabilitating eroding mangrove-mud coasts. Wetlands 33, 515–526 (2012).

    Article  Google Scholar 

  47. 47

    Mukhtar, I. & Hannan, A. Constraints on mangrove forests and conservation projects in Pakistan. J. Coastal Conserv. 16, 51–62 (2012).

    Article  Google Scholar 

  48. 48

    Tran, T. T. H., van Dijk, H. & Bush, S. R. Mangrove conservation or shrimp farmer's livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast. Manage. 69, 185–193 (2012).

    Article  Google Scholar 

  49. 49

    Marani, M., d'Alpaos, A., Lanzoni, S. & Santalucia, M. Understanding and predicting wave erosion of marsh edges. Geophys. Res. Lett. 38, L21401 (2011).

    Article  Google Scholar 

  50. 50

    Scyphers, S. B., Powers, S. P., Heck, K. L. & Byron, D. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS ONE 6, e22396 (2011).

    CAS  Article  Google Scholar 

  51. 51

    Kim, C-K., Park, K. & Powers, S. P. Establishing restoration strategy of Eastern Oyster via a coupled biophysical transport model. Restor. Ecol. 21, 353–362 (2012).

    Article  Google Scholar 

  52. 52

    Dean, R. G., Chen, R. & Browder, A. E. Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA. Coast. Eng. 29, 291–315 (1997).

    Article  Google Scholar 

  53. 53

    Ranasinghe, R. & Turner, I. Shoreline response to submerged structures: A review. Coast. Eng. 53, 65–79 (2006).

    Article  Google Scholar 

  54. 54

    Ranasinghe, R., Larson, M. & Savioli, J. Shoreline response to a single shore-parallel submerged breakwater. Coast. Eng. 57, 1006–1017 (2010).

    Article  Google Scholar 

  55. 55

    Cáceres, I., Sánchez-Arcilla, A., Alsina, J. M., González-Marco, D. & Sierra, J. P. in Coastal Dynamics 2005: State of the Practice (ed. Sanchez-Arcilla, A.) http://dx.doi.org/10.1061/40855(214)53 (American Society of Civil Engineers, 2006).

    Google Scholar 

  56. 56

    Campbell, M. D. Analysis and Evaluation of a Bioengineered Submerged Breakwater MSc thesis, Louisiana State Univ. (2004); available via http://go.nature.com/LYl2OY

    Google Scholar 

  57. 57

    Allen, R. J. & Webb, B. M. in Coastal Engineering Practice (eds Magoon, O. T., Noble, R. M., Treadwell, D. D. & Kim. Y. C.) 684–697 (ASCE, 2011).

    Google Scholar 

  58. 58

    Van der Meer, J. W., Briganti, R., Zanuttigh, B. & Wang, B. Wave transmission and reflection at low crested structures: Design formulae, oblique wave attack and spectral change. Coast. Eng. 52, 915–929 (2005).

    Article  Google Scholar 

  59. 59

    Peterson, C. H. & Lipcius, R. N. Conceptual progress towards predicting quantitative ecosystem benefits of ecological restoration? Mar. Ecol. Prog. Ser. 264, 297–307 (2003).

    Article  Google Scholar 

  60. 60

    Coen, L. D. et al. Ecosystem services related to oyster restoration. Mar. Ecol. Prog. Ser. 341, 303–307 (2007).

    Article  Google Scholar 

  61. 61

    Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration and management. BioScience 61, 107–116 (2011).

    Article  Google Scholar 

  62. 62

    Coen, L. D., Luckenbach, M. W. & Breitburg, D. L. in Fish Habitat: Essential Fish Habitat and Rehabilitation (ed. Benaka, L. R.) 438–454 (American Fisheries Society, 1999).

    Google Scholar 

  63. 63

    Kroeger, T. Dollars and Sense: Economic Benefits and Impacts from Two Oyster Reef Restoration Projects in the Northern Gulf of Mexico (Nature Conservancy, 2012).

    Google Scholar 

Download references

Acknowledgements

We thank Jess Silver and Megan Holroyd for their assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to So-Min Cheong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheong, SM., Silliman, B., Wong, P. et al. Coastal adaptation with ecological engineering. Nature Clim Change 3, 787–791 (2013). https://doi.org/10.1038/nclimate1854

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing