Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Upper bounds on twenty-first-century Antarctic ice loss assessed using a probabilistic framework

Abstract

Climate adaptation and flood risk assessments1,2 have incorporated sea-level rise (SLR) projections developed using semi-empirical methods3,4,5 (SEMs) and expert-informed mass-balance scenarios2,6. These techniques, which do not explicitly model ice dynamics, generate upper bounds on twenty-first century SLR that are up to three times higher than Intergovernmental Panel on Climate Change estimates7. However, the physical basis underlying these projections, and their likelihood of occurrence, remain unclear8,9,10. Here, we develop mass-balance projections for the Antarctic ice sheet within a Bayesian probabilistic framework10, integrating numerical model output11 and updating projections with an observational synthesis12. Without abrupt, sustained, changes in ice discharge (collapse), we project a 95th percentile mass loss equivalent to 13 cm SLR by 2100, lower than previous upper-bound projections. Substantially higher mass loss requires regional collapse, invoking dynamics that are likely to be inconsistent with the underlying assumptions of SEMs. In this probabilistic framework, the pronounced sensitivity of upper-bound SLR projections to the poorly known likelihood of collapse is lessened with constraints on the persistence and magnitude of subsequent discharge. More realistic, fully probabilistic, estimates of the ice-sheet contribution to SLR may thus be obtained by assimilating additional observations and numerical models11,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic illustration of the methodology used to generate mass-balance projections for Antarctica.
Figure 2: Mass-balance projections, and comparison with previous work.
Figure 3: Sensitivity analysis.
Figure 4: Sensitivity of upper-bound SLR projections to localized collapse.

Similar content being viewed by others

References

  1. Parris, A. P. et al. Global Sea Level Rise Scenarios for the United States National Climate Assessment (NOAA Climate Program Office, 2012).

    Google Scholar 

  2. Katsman, C. et al. Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta—the Netherlands as an example. Climatic Change 3–4, 617–645 (2011).

    Article  Google Scholar 

  3. Vermeer, M. & Rahmstorf, S. Global sea level linked to global temperature. Proc. Natl Acad. Sci. USA 106, 21527–21532 (2009).

    Article  CAS  Google Scholar 

  4. Grinsted, A., Moore, J. & Jevrejeva, S. Reconstructing sea level from paleo and projected temperatures 200 to 2100. Clim. Dynam. 34, 461–472.

  5. Jevrejeva, S., Moore, J. C. & Grinsted, A. How will sea level respond to changes in natural and anthropogenic forcings by 2100? Geophys. Res. Lett. 37, L07703 (2010).

    Article  Google Scholar 

  6. Pfeffer, W. T., Harper, J. T. & O’Neel, S. Kinematic constraints on glacier contributions to twenty first century sea-level rise. Science 321, 1340–1343 (2008).

    Article  CAS  Google Scholar 

  7. Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 748–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  8. Willis, J. K. & Church, J. A. Regional sea-level projection. Science 336, 550–551 (2012).

    Article  CAS  Google Scholar 

  9. Lowe, J. A. & Gregory, J. M. A sea of uncertainty. Nature Rep. Clim. Change 4, 42–43 (2010).

    Article  Google Scholar 

  10. Little, C. M., Urban, N. M. & Oppenheimer, M. Probabilistic framework for assessing the ice sheet contribution to sea level change. Proc. Natl Acad. Sci. USA 110, 3264–3269 (2013).

    Article  CAS  Google Scholar 

  11. Joughin, I., Smith, B. E. & Holland, D. M. Sensitivity of twenty first century sea level to ocean-induced thinning of Pine Island Glacier, Antarctica. Geophys. Res. Lett. 37, L20502 (2010).

    Article  Google Scholar 

  12. Shepherd, A. et al. A reconciled estimate of ice sheet mass balance. Science 338, 1183–1189 (2012).

    Article  CAS  Google Scholar 

  13. Gladstone, R. M. et al. Calibrated prediction of Pine Island Glacier retreat during the 21st and 22nd centuries with a coupled flowline model. Earth Planet. Sci. Lett. 333–334, 191–199 (2012).

    Article  Google Scholar 

  14. Oppenheimer, M., O’Neill, B. C., Webster, M. & Agrawala, S. Climate change—the limits of consensus. Science 317, 1505–1506 (2007) 0036-8075.

    Article  CAS  Google Scholar 

  15. Jevrejeva, S., Moore, J. C. & Grinsted, A. Potential for bias in twenty first century semiempirical sea level projections. J. Geophys. Res. Atmos. 117, D20116 (2012).

    Article  Google Scholar 

  16. Joughin, I. & Alley, R. B. Stability of the West Antarctic Ice Sheet in a warming world. Nature Geosci. 4, 506–513 (2011).

    Article  CAS  Google Scholar 

  17. Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci. 2, 471–478.

  18. Gregory, J. M. et al. Twentieth-century global-mean sea-level rise: is the whole greater than the sum of the parts? J. Clim. http://dx.doi.org/10.1175/JCLI-D-12-00319.1 (2012).

  19. Thompson, W. G., Curran, H. A., Wilson, M. A. & White, B. Sea-level oscillations during the last interglacial highstand recorded by Bahamas corals. Nature Geosci. 4, 684–687 (2011).

    Article  CAS  Google Scholar 

  20. Van de Berg, W. J., van den Broeke, M., Ettema, J., van Meijgaard, E. & Kaspar, F. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nature Geosci. 4, 679–683 (2011).

    Article  CAS  Google Scholar 

  21. Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci. 1, 106–110 (2008).

    Article  CAS  Google Scholar 

  22. Zwally, H. & Giovinetto, M. Overview and assessment of antarctic ice-sheet mass balance estimates: 1992–2009. Surv. Geophys. 32, 1–26 (2011).

    Article  Google Scholar 

  23. Rignot, E. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys. Res. Lett. 35, L12505 (2008).

    Google Scholar 

  24. Shuman, C. A., Berthier, E. & Scambos, T. A. 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol. 57, 737–754 (2011).

    Article  Google Scholar 

  25. Jenkins, A. et al. Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci. 3, 468–472 (2010).

    Article  CAS  Google Scholar 

  26. Thomas, R. et al. Accelerating ice loss from the fastest Greenland and Antarctic glaciers. Geophys. Res. Lett. 38, L10502 (2011).

    Google Scholar 

  27. Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A. & LeBrocq, A. M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324, 901–903 (2009).

    Article  CAS  Google Scholar 

  28. Bamber, J. L. & Aspinall, W. P. An expert judgement assessment of future sea level rise from the ice sheets. Nature Clim. Change http://dx.doi.org/10.1038/nclimate1778 (2013).

  29. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  CAS  Google Scholar 

  30. Winkelmann, R., Levermann, A., Frieler, K. & Martin, M. A. Uncertainty in future solid ice discharge from Antarctica. Cryosphere Disuss. 6, 673–714 (2012).

    Article  Google Scholar 

  31. Goldberg, D. N. et al. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1: Model description and behaviour. J. Geophys. Res. 117, 2156–2202 (2012).

    Google Scholar 

  32. McKay, N. P., Overpeck, J. T. & Otto-Bliesner, B. L. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Res. Lett. 38, L14605 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

C.M.L. is grateful for financial support from the Science, Technology and Environmental Policy programme in the Woodrow Wilson School of Public and International Affairs at Princeton University and the Carbon Mitigation Initiative in the Princeton Environmental Institute. The authors thank K. Keller, O. Sergienko and Y. Liu for many helpful suggestions. We also thank A. Shepherd and the Ice Sheet Mass Balance Exercise team for promptly providing data.

Author information

Authors and Affiliations

Authors

Contributions

C.M.L, N.M.U and M.O. designed the research. C.M.L. conducted the data analysis and wrote the manuscript. M.O and N.M.U. contributed extensively to the paper writing, editing and revision.

Corresponding author

Correspondence to Christopher M. Little.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Little, C., Oppenheimer, M. & Urban, N. Upper bounds on twenty-first-century Antarctic ice loss assessed using a probabilistic framework. Nature Clim Change 3, 654–659 (2013). https://doi.org/10.1038/nclimate1845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1845

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics