Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The UN's 'Sustainable Energy for All' initiative is compatible with a warming limit of 2 °C

Abstract

Progress towards climate protection has been modest over the past decades despite the ever-increasing urgency for concerted action against global warming. Partly as a response to this, but more directly as a means to promote sustainable development and poverty eradication, the United Nations has initiated a process to promote three global energy objectives: energy access, renewable energy and energy efficiency. Here we discuss the consistency of the proposed energy-related objectives with the overarching climate goal of limiting global temperature increase to below 2 °C. We find that achieving the three energy objectives could provide an important entry point to climate protection, and that sustainability and poverty eradication can go hand in hand with mitigating climate risks. Using energy indicators as the sole metrics for climate action may, however, ultimately fall short of the mark: eventually, only limits on cumulative greenhouse gas emissions will lead to stringent climate protection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Joint influence of carbon intensity and energy intensity improvements for limiting global temperature.
Figure 2: Consistency of the three SE4ALL energy objectives with a global temperature limit of 2 °C.
Figure 3: Global contributions of key technologies to primary energy supply in scenarios consistent with 2 °C.
Figure 4: Regional differences in energy indicator values in our 2 °C-consistent scenarios that meet both the energy efficiency and renewable energy SE4ALL objectives.

Similar content being viewed by others

References

  1. Rogelj, J. et al. Copenhagen Accord pledges are paltry. Nature 464, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  2. Peters, G. P. et al. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nature Clim. Change 2, 2–4 (2012).

    Article  CAS  Google Scholar 

  3. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    Article  CAS  Google Scholar 

  4. Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).

    Article  CAS  Google Scholar 

  5. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    Article  CAS  Google Scholar 

  6. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  7. Smith, S. M. et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nature Clim. Change 2, 535–538 (2012).

    Article  CAS  Google Scholar 

  8. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    Article  CAS  Google Scholar 

  9. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  CAS  Google Scholar 

  10. Solomon, S. et al. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl Acad. Sci. USA 107, 18354–18359 (2010).

    Article  CAS  Google Scholar 

  11. Huber, M. & Knutti, R. Anthropogenic and natural warming inferred from changes in Earth's energy balance. Nature Geosci. 5, 31–36 (2012).

    Article  CAS  Google Scholar 

  12. Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, http://dx.doi.org/10.1029/2007gl032388 (2008).

  13. RCP Database (version 2.0), http://www.iiasa.ac.at/web-apps/tnt/RcpDb (2009).

  14. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  15. Boden, T. A., Marland, G. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO 2 Emissionshttp://dx.doi.org/10.3334/CDIAC/00001_V2012 (2012).

  16. United Nations in The Future We Want. Proc. Rio+20 UN Conference on Sustainable Development: A/CONF.216/L.1, 20–22 June 2012, 1–53 (United Nations, 2012).

  17. United Nations Sustainable Energy for All 1–12 available via http://go.nature.com/F5eqSc (2011).

  18. The Secretary-General's High-level Group on Sustainable Energy for All. Sustainable Energy for All: A Framework for Action 23 Available via http://go.nature.com/IDerp6 (2012).

  19. UNEP and WHO The Energy Access Situation in Developing Countries: A Review Focussing on the Least Developed Countries and Sub-Saharan Africa 142 (UNEP/WHO, 2009).

  20. Kaya, Y. Impact of carbon dioxide emission control on GNP growth: Interpretation of proposed scenarios. (Paper presented to the IPCC Energy and Industry Subgroup, Response Strategies Working Group, 1990).

  21. Lawn, P. The need to move to a qualitatively-improving steady-state economy to resolve the climate change dilemma. Int. J. Green Econ. 4, 393–428 (2010).

    Article  Google Scholar 

  22. IPCC Climate Change 2007: Mitigation (eds Metz, B., Davidson, O.R., Bosch, P.R., Dave, R. & Meyer, L.A.) 860 (Cambridge Univ. Press, 2007).

  23. Fischedick, M. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) Ch. 10 (Cambridge Univ. Press, 2011).

    Google Scholar 

  24. Yumkella, K., Nakicenovic, N., Bazilian, M. & Jewell, J. The Sustainable Energy for All initiative and climate change mitigation. WMO Bull. 61, 15–17 (2012).

    Google Scholar 

  25. Riahi, K. et al. in Global Energy Assessment: Toward a Sustainable Future, 1203–1306 (Cambridge Univ. Press and IIASA, 2012).

    Google Scholar 

  26. McCollum, D. L., Krey, V. & Riahi, K. An integrated approach to energy sustainability. Nature Clim. Change 1, 428–429 (2011).

    Article  Google Scholar 

  27. Kelly, J. A. An Overview of the RAINS Model. Report No. 1-84095-208–3, 35 (Environmental Protection Agency, 2006).

    Google Scholar 

  28. Clarke, L. et al. International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Econ. 31, S64–S81 (2009).

    Article  Google Scholar 

  29. Van Vuuren, D. et al. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Change 109, 95–116 (2011).

    Article  Google Scholar 

  30. Wise, M. A. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    Article  CAS  Google Scholar 

  31. Nakicenovic, N. & Swart, R. IPCC Special Report on Emissions Scenarios, 570 (Cambridge Univ. Press, 2000).

    Google Scholar 

  32. Armstrong, J. S. & Green, K. C. Forecasting Dictionary, http://www.forecastingprinciples.com/ (2012).

    Google Scholar 

  33. O'Neill, B. C., Riahi, K. & Keppo, I. Mitigation implications of midcentury targets that preserve long-term climate policy options. Proc. Natl Acad. Sci. USA 107, 1011–1016 (2009).

    Article  Google Scholar 

  34. Riahi, K., Gruebler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74 (Greenhouse Gases: Integrated Assessment special issue), 887–935 (2007).

    Article  Google Scholar 

  35. Rogelj, J., McCollum, D., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost distributions for climate change mitigation. Nature 493, 79–83 (2013).

    Article  Google Scholar 

  36. Rogelj, J., McCollum, D., O'Neill, B. & Riahi, K. 2020 emission levels required to limit warming to below 2 °C. Nature Clim. Change http://dx.doi.org/10.1038/nclimate1758 (2012).

  37. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6. Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  38. Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Clim. Change 2, 248–253 (2012).

    Article  Google Scholar 

  39. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 994 (Cambridge Univ. Press, 2007).

  40. IEA World Energy Outlook 2010 (International Energy Agency, 2010).

  41. Pachauri, S. et al. in Global Energy Assessment: Toward a Sustainable Future 58 (Cambridge Univ. Press and IIASA, 2012).

    Google Scholar 

  42. Ekholm, T., Krey, V., Pachauri, S. & Riahi, K. Determinants of household energy consumption in India. Energy Policy 38, 5696–5707 (2010).

    Article  Google Scholar 

  43. Reddy, B. S. Overcoming the energy efficiency gap in India's household sector. Energy Policy 31, 1117–1127 (2003).

    Article  Google Scholar 

  44. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

  45. IPCC Special Report on Carbon Dioxide Capture and Storage (eds Metz, B. et al.) (IPCC, Cambridge, United Kingdom and New York, NY, USA, 2005).

  46. Grubler, A. et al. in Global Energy Assessment: Toward a Sustainable Future, 99–150 (Cambridge Univ. Press, 2012).

    Book  Google Scholar 

  47. McCollum, D. L. et al. Climate policies can help resolve energy security and air pollution challenges. Clim. Change http://dx.doi.org/10.1007/s10584-013-0710-y (in the press).

  48. IEA IEA Data Services (Online Statistics) http://data.iea.org (2010).

  49. Boden, T. A., Marland, G. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO2 Emissions http://cdiac.ornl.gov/trends/emis/overview.html (2010).

    Book  Google Scholar 

Download references

Acknowledgements

We thank N. Nakicenovic, L. Gomez-Echeverri, J. Jewell and V. Krey for discussions about initial research questions, and P. Kolp for his technical support. J.R. was supported by the Swiss National Science Foundation (project 200021-135067) and the IIASA Peccei Award Grant.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and K.R. designed the research; J.R. performed the research; all authors contributed to writing the paper. D.L.M. and K.R. are listed in alphabetical order.

Corresponding author

Correspondence to Joeri Rogelj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogelj, J., McCollum, D. & Riahi, K. The UN's 'Sustainable Energy for All' initiative is compatible with a warming limit of 2 °C. Nature Clim Change 3, 545–551 (2013). https://doi.org/10.1038/nclimate1806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing