Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A global assessment of the effects of climate policy on the impacts of climate change


This study presents the first global-scale multi-sectoral regional assessment of the magnitude and uncertainty in the impacts of climate change avoided by emissions policies. The analysis suggests that the most stringent emissions policy considered here—which gives a 50% chance of remaining below a 2 °C temperature rise target—reduces impacts by 20–65% by 2100 relative to a ‘business-as-usual’ pathway which reaches 4 °C, and can delay impacts by several decades. The effects of mitigation policies vary between sectors and regions, and only a few are noticeable by 2030. The impacts avoided by 2100 are more strongly influenced by the date and level at which emissions peak than the rate of decline of emissions, with an earlier and lower emissions peak avoiding more impacts. The estimated proportion of impacts avoided at the global scale is relatively robust despite uncertainty in the spatial pattern of climate change, but the absolute amount of avoided impacts is considerably more variable and therefore uncertain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Global annual and cumulative CO2-equivalent emissions, CO2-equivalent concentrations, average global temperature change and global sea-level rise under the emissions pathways.
Figure 2: Global-scale impacts of climate change under different emissions pathways, using the HadCM3 climate model geographical and seasonal patterns of change.
Figure 3: Global-scale impacts avoided by climate policy in 2050 and 2100, relative to two plausible no-policy climate futures, using the HadCM3 climate model patterns of change.
Figure 4: Uncertainty in global-scale avoided impacts in 2050 and 2100 due to using different climate model patterns for A1B-2016-5-L emissions compared with the A1B no-policy pathway.
Figure 5: Regional variation in a selection of impacts avoided by climate policy in 2100, for A1B-2016-5-L emissions compared with the A1B no-policy pathway.


  1. Dessai, S. et al. Defining and experiencing dangerous climate change—An editorial essay. Climatic Change 64, 11–25 (2004).

    Article  Google Scholar 

  2. Oppenheimer, M. Defining dangerous anthropogenic interference: The role of science, the limits of science. Risk Anal. 25, 1399–1407 (2005).

    Article  Google Scholar 

  3. Harvey, L. D. D. Dangerous anthropogenic interference, dangerous climatic change, and harmful climatic change: Non-trivial distinctions with significant policy implications. Climatic Change 82, 1–25 (2007).

    CAS  Article  Google Scholar 

  4. Houghton J. T., Meira Filho L. G., Griggs, D. J. and Maskell K. (eds) Stabilization of Atmospheric Greenhouse Gases: Physical, Biological and Socio-economic Implications IPCC Technical Paper III. (IPCC, 1997).

  5. Wigley, T. M. L. The Kyoto Protocol: CO2, CH4 and climate implications. Geophys. Res. Lett. 25, 2285–2288 (1998).

    CAS  Article  Google Scholar 

  6. Mitchell, J. F. B., Johns, T. C., Ingram, W. J. & Lowe, J. A. The effect of stabilising atmospheric carbon dioxide concentrations on global and regional climate change. Geophys. Res. Lett. 27, 2977–2980 (2000).

    CAS  Article  Google Scholar 

  7. O’Neill, B. C. & Oppenheimer, M. Climate change impacts are sensitive to the concentration stabilization path. Proc. Natl Acad. Sci. USA 101, 16411–16416 (2004).

    Article  Google Scholar 

  8. Hansen, J. et al. Dangerous human-made interference with climate: A GISS modelE study. Atmos. Chem. Phys. 7, 2287–2312 (2007).

    CAS  Article  Google Scholar 

  9. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    CAS  Article  Google Scholar 

  10. Solomon, S., Plattner, G. K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    CAS  Article  Google Scholar 

  11. Rogelj, J. et al. Analysis of the Copenhagen Accord pledges and its global climatic impacts-a snapshot of dissonant ambitions. Environ. Res. Lett. 5, 034013 (2010).

    Article  Google Scholar 

  12. Washington, W. M. et al. How much climate change can be avoided by mitigation? Geophys. Res. Lett. 36, L0870310 (2009).

    Article  Google Scholar 

  13. Committee on Stabilization Targets for Atmospheric Greenhouse Gas Concentrations & National Research Council Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia. (National Academies, 2011).

  14. Tubiello, F. N. & Fischer, G. I. Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080. Technol. Forecast. Soc. Change 74, 1030–1056 (2007).

    Article  Google Scholar 

  15. Arnell, N. W., van Vuuren, D. P. & Isaac, M. The implications of climate policy for the impacts of climate change on global water resources. Glob. Environ. Change 21, 592–603 (2011).

    Article  Google Scholar 

  16. Fischer, G., Tubiello, F. N., Van Velthuizen, H. & Wiberg, D. A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 74, 1083–1107 (2007).

    Article  Google Scholar 

  17. Nicholls, R. J. & Lowe, J. A. Benefits of mitigation of climate change for coastal areas. Glob. Environ. Change 14, 229–244 (2004).

    Article  Google Scholar 

  18. Pardaens, A. K., Lowe, J. A., Brown, S., Nicholls, R. J. & de Gusmao, D. Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions. Geophys. Res. Lett. 38, L12604 (2011).

    Article  Google Scholar 

  19. Bakkenes, M., Eickhout, B. & Alkemade, R. Impacts of different climate stabilisation scenarios on plant species in Europe. Glob. Environ. Change 16, 19–28 (2006).

    Article  Google Scholar 

  20. Arnell, N. W. et al. The consequences of CO2 stabilisation for the impacts of climate change. Climatic Change 53, 413–446 (2002).

    CAS  Article  Google Scholar 

  21. Hayashi, A., Akimoto, K., Sano, F., Mori, S. & Tomoda, T. Evaluation of global warming impacts for different levels of stabilization as a step toward determination of the long-term stabilization target. Climatic Change 98, 87–112 (2010).

    CAS  Article  Google Scholar 

  22. Van Vuuren, D. P. et al. The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation. Glob. Environ. Change 21, 575–591 (2011).

    Article  Google Scholar 

  23. Frumhoff, P. C. et al. An integrated climate change assessment for the Northeast United States. Mitig. Adapt. Strat. Glob. Change 13, 419–423 (2008).

    Article  Google Scholar 

  24. Hayhoe, K. et al. Emissions pathways, climate change, and impacts on California. Proc. Natl Acad. Sci. USA 101, 12422–12427 (2004).

    CAS  Article  Google Scholar 

  25. IPCC Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).

  26. Gohar, L. & Lowe, J. Summary of the emissions mitigation scenarios: Part 1. Work stream 1, Report 2 of the AVOID programme (AV/WS1/D1/R02) Available online at (Met Office Hadley Centre, 2009).

  27. Lowe, J. A. et al. How difficult is it to recover from dangerous levels of global warming? Environ. Res. Lett. 4, 014012 (2009).

    Article  Google Scholar 

  28. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6-Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    CAS  Article  Google Scholar 

  29. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset—A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383 (2007).

    Article  Google Scholar 

  30. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 data set. Int. J. Climatol. (in the press).

  31. Wu, P. L., Wood, R., Ridley, J. & Lowe, J. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett. 37, L12705 (2010).

    Google Scholar 

  32. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 10 (Cambridge Univ. Press, 2007).

    Google Scholar 

  33. Van Vuuren, D. P. et al. Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change 81, 119–159 (2007).

    Article  Google Scholar 

  34. CIESIN, Global Rural-Urban Mapping Project (GRUMP), Alpha Version: Population Grids. (Socioeconomic Data and Applications Center 2004); available at (Accessed 1 April 2011).

  35. Gosling, S. N. & Arnell, N. W. Simulating current global river runoff with a global hydrological model: Model revisions, validation, and sensitivity analysis. Hydrol. Proc. 25, 1129–1145 (2011).

    Article  Google Scholar 

  36. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, Gb1003 (2008).

    Article  Google Scholar 

  37. McKee, T. B., Doesken, N. J. & Kliest, J. Proc. 8th Conf. on Applied Climatology 179–184 (American Meteorological Society, 1993).

    Google Scholar 

  38. Hinkel, J. & Klein, R. J. T. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Glob. Environ. Change 19, 384–395 (2009).

    Article  Google Scholar 

  39. McFadden, L., Spencer, T. & Nicholls, R. J. Broad-scale modelling of coastal wetlands: What is required? Hydrobiologia 577, 5–15 (2007).

    Article  Google Scholar 

  40. Vafeidis, A. T. et al. A new global coastal database for impact and vulnerability analysis to sea-level rise. J. Coast. Res. 24, 917–924 (2008).

    Article  Google Scholar 

  41. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of cultivable lands: Current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11, 377–392 (2002).

    Article  Google Scholar 

  42. Challinor, A. J., Wheeler, T. R., Craufurd, P. Q., Slingo, J. M. & Grimes, D. I. F. Design and optimisation of a large-area process-based model for annual crops. Agric. Forest Meteorol. 124, 99–120 (2004).

    Article  Google Scholar 

  43. Osborne, T., Rose, G. A. & Wheeler, T. M. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. Forest Meteorol. (2012).

  44. Coleman, K. W. & Jenkinson, D. S. in Evaluation of Soil Organic Matter Models Using Existing Long-term Datasets (eds Powlson, D. S., Smith, P. & Smith, J. U.) 237–246 (Springer, 1996).

    Book  Google Scholar 

  45. Smith, J. et al. Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob. Change Biol. 11, 2141–2152 (2005).

    Article  Google Scholar 

  46. Gottschalk, P. et al. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences 9, 3151–3171 (2012).

    CAS  Article  Google Scholar 

  47. Isaac, M. & van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Pol. 37, 507–521 (2009).

    Article  Google Scholar 

Download references


The research presented in this paper was funded under the UK Department of Energy and Climate Change (DECC) AVOID programme (, and builds on the QUEST-GSI project funded by NERC (grant number NE/E001890/1). P.S. is a Royal Society-Wolfson Research Merit Award holder. The authors thank S. Raper (Manchester Metropolitan University) for her contribution to the development of the probabilistic parameterization of MAGICC. The authors thank the reviewers for their helpful comments.

Author information

Authors and Affiliations



N.W.A. developed the experimental design, led the analysis, performed some of the simulations and wrote the paper. J.A.L. led the AVOID project, developed the emissions and (with S.B.) the sea-level scenarios. T.J.O. developed and applied the ClimGEN climate scenario program. S.B. and J.H. ran the DIVA model, S.N.G. ran the hydrological models, P.G. ran the soil organic carbon model, B.L-H. ran the drought model and T.M.O. and G.A.R. ran the GLAM crop model. J.H. and R.J.N. contributed to the analysis of the coastal results, and P.S. contributed to the analysis of soil organic carbon results. R.F.W. contributed to the experimental design.

Corresponding author

Correspondence to N. W. Arnell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 908 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arnell, N., Lowe, J., Brown, S. et al. A global assessment of the effects of climate policy on the impacts of climate change. Nature Clim Change 3, 512–519 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing