Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The impact of lower sea-ice extent on Arctic greenhouse-gas exchange

Abstract

In September 2012, Arctic sea-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in sea-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced sea-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. Sea-ice decline has been connected to increasing air temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing sea-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower sea-ice cover on Arctic greenhouse-gas exchange.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Autumn sea-ice and temperature trends in the Arctic.
Figure 2: Trends in sea ice, SWI and NDVI.
Figure 3: Simplified representation of Arctic carbon fluxes that are possibly influenced by sea ice retreat.
Figure 4: Trends in anomalies of sea-ice extent, mean summer temperature and tundra methane emissions.

References

  1. 1

    Cavalieri, D. J. & Parkinson, C. L. Arctic sea ice variability and trends, 1979–2010. The Cryosphere 6, 881–889 (2012).

    Article  Google Scholar 

  2. 2

    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).

    Article  Google Scholar 

  3. 3

    Comiso, J. C. Large decadal decline of the Arctic multiyear ice cover. J. Climate 25, 1176–1193 (2012).

    Article  Google Scholar 

  4. 4

    Maslanik, J., Stroeve, J., Fowler, C. & Emery, W. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett. 38, L13502 (2011).

    Article  Google Scholar 

  5. 5

    Perovich, D. K. & Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 39, L08501 (2012).

    Article  Google Scholar 

  6. 6

    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Schuur, E. A. G. & Abbott, B. High risk of permafrost thaw. Nature 480, 32–33 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Serreze, M. C. & Francis, J. A. The arctic amplification debate. Climatic Change 76, 241–264 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Bates, N. R. & Mathis, J. T. The Arctic Ocean marine carbon cycle: Evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6, 2433–2459 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Bourgain, P. & Gascard, J. C. The Atlantic and summer Pacific waters variability in the Arctic Ocean from 1997 to 2008. Geophys. Res. Lett. 39, L05603 (2012).

    Article  Google Scholar 

  11. 11

    Maslanik, J., Drobot, S., Fowler, C., Emery, W. & Barry, R. On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys. Res. Lett. 34, L03711 (2007).

    Google Scholar 

  12. 12

    Bates, N. R., Moran, S. B., Hansell, D. A. & Mathis, J. T. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett. 33, L23609 (2006).

    Article  CAS  Google Scholar 

  13. 13

    Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. & Christensen, P. B. Inorganic carbon transport during sea ice growth and decay: A carbon pump in polar seas. J. Geophys. Res. 112, C03016 (2007).

    Article  CAS  Google Scholar 

  14. 14

    Liu, J., Curry, J. A., Wang, H., Song, M. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 109, 4074–4079 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Stroeve, J. C., Serreze, M. C., Barrett, A. & Kindig, D. N. Attribution of recent changes in autumn cyclone associated precipitation in the Arctic. Tellus A 63, 653–663 (2011).

    Article  Google Scholar 

  17. 17

    Simmonds, I. & Keay, K. Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008 Geophys. Res. Lett. 36, L19715 (2009).

    Article  Google Scholar 

  18. 18

    Steele, M., Ermold, W. & Zhang, J. Arctic Ocean surface warming trends over the past 100 years. Geophys. Res. Lett. 35, L02614 (2008).

    Article  Google Scholar 

  19. 19

    Bekryaev, R. V., Polyakov, I. V. & Alexeev, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Climate 23, 3888–3906 (2010).

    Article  Google Scholar 

  20. 20

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Article  Google Scholar 

  21. 21

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem Cycles 23, GB2023 (2009).

    Article  CAS  Google Scholar 

  22. 22

    Christensen, T. R. et al. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 1414 (2003).

    Article  CAS  Google Scholar 

  23. 23

    Zhuang, Q. et al. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. 33, L17403 (2006).

    Article  CAS  Google Scholar 

  24. 24

    Hu, F. S. et al. Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. J. Geophys. Res. 115, G04002 (2010).

    Article  Google Scholar 

  25. 25

    Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M. & Deser, C. Accelerated Arctic land warming and permafrost degradation during rapid sea ice loss. Geophys. Res. Lett. 35, L11506 (2008).

    Article  Google Scholar 

  26. 26

    Chung, C. E. & Räisänen, P. Origin of the Arctic warming in climate models. Geophys. Res. Lett. 38, L21704 (2011).

    Article  Google Scholar 

  27. 27

    Déry, S. J. & Brown, R. D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett. 34, L22504 (2007).

    Article  Google Scholar 

  28. 28

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  Google Scholar 

  29. 29

    Curry, J. A., Schramm, J. L. & Ebert, E. E. Sea-ice albedo climate feedback mechanism. J. Climate 8, 240–247 (1995).

    Article  Google Scholar 

  30. 30

    Graversen, R. G. & Wang, M. Polar amplification in a coupled climate model with locked albedo. Clim. Dynam. 33, 629–643 (2009).

    Article  Google Scholar 

  31. 31

    Yang, X-Y., Fyfe, J. C. & Flato, G. M. The role of poleward energy transport in Arctic temperature evolution. Geophys. Res. Lett. 37, L14803 (2010).

    Google Scholar 

  32. 32

    Graversen, R. G., Mauritsen, T., Tjernstrom, M., Kallen, E. & Svensson, G. Vertical structure of recent Arctic warming. Nature 541, 53–56 (2008).

    Article  CAS  Google Scholar 

  33. 33

    Screen, J. A. & Simmonds, I. Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer look. J. Climate 24, 2620–2627 (2011).

    Article  Google Scholar 

  34. 34

    Alexeev, V. A., Esau, I., Polyakov, I. V., Byam, S. J. & Sorokina, S. Vertical structure of recent arctic warming from observed data and reanalysis products. Climatic Change 111, 215–239 (2012).

    Article  Google Scholar 

  35. 35

    Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N. & Holland, M. M. The emergence of surface-based Arctic amplification. The Cryosphere 3, 11–19 (2009).

    Article  Google Scholar 

  36. 36

    Francis, J. A. & Hunter, E. Changes in the fabric of the Arctic's greenhouse blanket. Environ. Res. Lett. 2, 045011 (2007).

    Article  Google Scholar 

  37. 37

    Kay, J. E. & Gettelman, A. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res. 114, D18204 (2009).

    Article  Google Scholar 

  38. 38

    Screen, J. A., Deser, C. & Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 39, L10709 (2012).

    Article  Google Scholar 

  39. 39

    Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate 23, 333–351 (2010).

    Article  Google Scholar 

  40. 40

    Screen, J. A., Simmonds, I., Deser, C. & Tomas, R. The atmospheric response to three decades of observed Arctic sea ice loss. J. Climate http://dx.doi.org/10.1175/JCLI-D-12-00063.1 (2012).

  41. 41

    Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    CAS  Article  Google Scholar 

  42. 42

    Jia, G. J., Epstein, H. E. & Walker, D. A. Greening of arctic Alaska, 1981–2001 Geophys. Res. Lett. 30, 2067 (2003).

    Article  Google Scholar 

  43. 43

    Bhatt, U. S. et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact. 14, (2010).

  44. 44

    Aurela, M., Laurila, T. & Tuovinen, J-P. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys. Res. Lett. 31, L16119 (2004).

    Article  CAS  Google Scholar 

  45. 45

    Lafleur, P. M. & Humphreys, E. R. Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Glob. Change Biol. 14, 740–756 (2008).

    Article  Google Scholar 

  46. 46

    Groendahl, L., Friborg, T. & Soegaard, H. Temperature and snow-melt controls on interannual variability in carbon exchange in the high Arctic. Theor. Appl. Climatol. 88, 111–125 (2007).

    Article  Google Scholar 

  47. 47

    Parmentier, F. J. W. et al. Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J. Geophys. Res. 116, G04013 (2011).

    Google Scholar 

  48. 48

    Humphreys, E. R. & Lafleur, P. M. Does earlier snowmelt lead to greater CO2 sequestration in two low Arctic tundra ecosystems? Geophys. Res. Lett. 38, L09703 (2011).

    Article  CAS  Google Scholar 

  49. 49

    Lund, M. et al. Trends in CO2 exchange in a high Arctic tundra heath, 2000–2010 J. Geophys. Res. 117, G02001 (2012).

    Google Scholar 

  50. 50

    McGuire, A. D. et al. An assessment of the carbon balance of arctic tundra: Comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Sitch, S. et al. Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling. Ecol. Appl. 17, 213–234 (2007).

    Article  Google Scholar 

  52. 52

    McGuire, A. D. et al. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006. Tellus B 62, 455–474 (2010).

    Article  CAS  Google Scholar 

  53. 53

    Hayes, D. J. et al. Is the northern high-latitude land-based CO2 sink weakening? Glob. Biogeochem Cycles 25, GB3018 (2011).

    Article  CAS  Google Scholar 

  54. 54

    Vandenberghe, J. et al. Eurasian permafrost instability constrained by reduced sea-ice cover. Quat. Sci. Rev. 34, 16–23 (2012).

    Article  Google Scholar 

  55. 55

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. Pt II 56, 554–577 (2009).

    CAS  Article  Google Scholar 

  56. 56

    Arrigo, K. R., Pabi, S., van Dijken, G. L. & Maslowski, W. Air-sea flux of CO2 in the Arctic Ocean, 1998–2003 J. Geophys. Res. 115, G04024 (2010).

    Article  CAS  Google Scholar 

  57. 57

    Anderson, L. G. et al. Arctic ocean shelf-basin interaction: An active continental shelf CO2 pump and its impact on the degree of calcium carbonate solubility. Deep-Sea Res. Pt I 57, 869–879 (2010).

    CAS  Article  Google Scholar 

  58. 58

    Tsunogai, S., Watanabe, S. & Sato, T. Is there a 'continental shelf pump' for the absorption of atmospheric CO2? Tellus B 51, 701–712 (1999).

    Article  Google Scholar 

  59. 59

    Thomas, H., Bozec, Y., Elkalay, K. & de Baar, H. J. W. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304, 1005–1008 (2004).

    CAS  Article  Google Scholar 

  60. 60

    Marinov, I., Gnanadesikan, A., Toggweiler, J. R. & Sarmiento, J. L. The Southern Ocean biogeochemical divide. Nature 441, 964–967 (2006).

    CAS  Article  Google Scholar 

  61. 61

    Bates, N. R. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. J. Geophys. Res. 111, C10013 (2006).

    Article  CAS  Google Scholar 

  62. 62

    Semiletov, I. P., Pipko, I. I., Repina, I. & Shakhova, N. E. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean: Pacific sector of the Arctic. J. Marine Syst. 66, 204–226 (2007).

    Article  Google Scholar 

  63. 63

    Cai, W-J. et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329, 556–559 (2010).

    CAS  Article  Google Scholar 

  64. 64

    Strass, V. H. & Nöthig, E-M. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409–422 (1996).

    Article  Google Scholar 

  65. 65

    Fortier, M., Fortier, L., Michel, C. & Legendre, L. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar. Ecol. Prog. Ser. 225, 1–16 (2002).

    Article  Google Scholar 

  66. 66

    Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).

    Article  Google Scholar 

  67. 67

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).

    CAS  Article  Google Scholar 

  68. 68

    Rysgaard, S., Bendtsen, J., Pedersen, L. T., Ramløv, H. & Glud, R. N. Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas. J. Geophys. Res. 114, C09011 (2009).

    Article  CAS  Google Scholar 

  69. 69

    Rysgaard, S. et al. Ikaite crystals in melting sea ice — Implications for pCO2 and pH levels in Arctic surface waters. The Cryosphere 6, 901–908 (2012).

    Article  Google Scholar 

  70. 70

    Rysgaard, S. et al. Sea ice contribution to the air-sea CO2 exchange in the Arctic and Southern Oceans. Tellus B 63, 823–830 (2011).

    CAS  Article  Google Scholar 

  71. 71

    McLaren, A. J. et al. Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J. Geophys. Res. 111, C12014 (2006).

    Article  Google Scholar 

  72. 72

    Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G. S. & Thomas, D. N. Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation. Geochim. Cosmochim. Acta 68, 1749–1761 (2004).

    CAS  Article  Google Scholar 

  73. 73

    Nomura, D., Yoshikawa-Inoue, H. & Toyota, T. The effect of sea-ice growth on air-sea CO2 flux in a tank experiment. Tellus B 58, 418–426 (2006).

    Article  CAS  Google Scholar 

  74. 74

    Freitag, J. & Eicken, H. Meltwater circulation and permeability of Arctic summer sea ice derived from hydrological field experiments. J. Glaciol. 49, 349–358 (2003).

    Article  Google Scholar 

  75. 75

    Geilfus, N. X. et al. Dynamics of pCO2 and related air-ice CO2 fluxes in the Arctic coastal zone (Amundsen Gulf, Beaufort Sea). J. Geophys. Res. 117, C00G10 (2012).

    Article  Google Scholar 

  76. 76

    Semiletov, I., Makshtas, A., Akasofu, S. I. & Andreas, E. L. Atmospheric CO2 balance: The role of Arctic sea ice. Geophys. Res. Lett. 31, L05121 (2004).

    Article  CAS  Google Scholar 

  77. 77

    Nomura, D., Yoshikawa-Inoue, H., Toyota, T. & Shirasawa, K. Effects of snow, snowmelting and refreezing processes on air-sea-ice CO2 flux. J. Glaciol. 56, 262–270 (2010).

    CAS  Article  Google Scholar 

  78. 78

    Miller, L. A. et al. Carbon dynamics in sea ice: A winter flux time series. J. Geophys. Res. 116, C02028 (2011).

    Article  CAS  Google Scholar 

  79. 79

    Loose, B. et al. Gas diffusion through columnar laboratory sea ice: Implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus B 63, 23–39 (2011).

    CAS  Article  Google Scholar 

  80. 80

    Screen, J. A. & Simmonds, I. Declining summer snowfall in the Arctic: Causes, impacts and feedbacks. Clim. Dynam. 38, 2243–2256 (2011).

    Article  Google Scholar 

  81. 81

    Cavalieri, D. J. & Martin, S. The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic-Ocean. J. Geophys. Res. 99, 18343–18362 (1994).

    Article  Google Scholar 

  82. 82

    Dmitrenko, I. A. et al. Impact of flaw polynyas on the hydrography of the Laptev Sea. Glob. Planet. Change 48, 9–27 (2005).

    Article  Google Scholar 

  83. 83

    Else, B. G. T. et al. Wintertime CO2 fluxes in an Arctic polynya using eddy covariance: Evidence for enhanced air-sea gas transfer during ice formation. J. Geophys. Res. 116, C00G03 (2011).

    Article  CAS  Google Scholar 

  84. 84

    Dlugokencky, E. J. et al. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36, L18803 (2009).

    Article  CAS  Google Scholar 

  85. 85

    Mastepanov, M. et al. Large tundra methane burst during onset of freezing. Nature 456, 628–630 (2008).

    CAS  Article  Google Scholar 

  86. 86

    Zona, D. et al. Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Glob. Biogeochem. Cycles 23, GB2013 (2009).

    Article  CAS  Google Scholar 

  87. 87

    Parmentier, F. J. W. et al. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. J. Geophys. Res. 116, G03016 (2011).

    Google Scholar 

  88. 88

    Sturtevant, C. S., Oechel, W. C., Zona, D., Kim, Y. & Emerson, C. E. Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska. Biogeosciences 9, 1423–1440 (2012).

    CAS  Article  Google Scholar 

  89. 89

    Zhuang, Q. et al. Net emissions of CH4 and CO2 in Alaska: Implications for the region's greenhouse gas budget. Ecol. Appl. 17, 203–212 (2007).

    CAS  Article  Google Scholar 

  90. 90

    Wania, R., Ross, I. & Prentice, I. C. Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1. Geosci. Model Dev. 3, 565–584 (2010).

    Article  Google Scholar 

  91. 91

    Shakhova, N. et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327, 1246–1250 (2010).

    CAS  Article  Google Scholar 

  92. 92

    Westbrook, G. K. et al. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophys. Res. Lett. 36, L15608 (2009).

    Article  CAS  Google Scholar 

  93. 93

    Dmitrenko, I. A. et al. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. J. Geophys. Res. 116, C10027 (2011).

    Article  Google Scholar 

  94. 94

    Damm, E. et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099–1108 (2010).

    CAS  Article  Google Scholar 

  95. 95

    Karl, D. M. et al. Aerobic production of methane in the sea. Nature Geosci. 1, 473–478 (2008).

    CAS  Article  Google Scholar 

  96. 96

    Metcalf, W. W. et al. Synthesis of methylphosphonic acid by marine microbes: A source for methane in the aerobic ocean. Science 337, 1104–1107 (2012).

    CAS  Article  Google Scholar 

  97. 97

    Kort, E. A. et al. Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north. Nature Geosci. 5, 318–321 (2012).

    CAS  Article  Google Scholar 

  98. 98

    Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  99. 99

    Comiso, J. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS 1978-2011 v.2 (National Snow and Ice Data Center, 2000).

  100. 100

    McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).

    Article  Google Scholar 

  101. 101

    Fetterer, F., Knowles, K., Meier, W. & Savoie, M. Sea Ice Index (National Snow and Ice Data Center, 2002).

    Google Scholar 

  102. 102

    Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This paper came forth from fruitful discussions at the mini-conference 'Ocean-Land Interactions at High Latitudes' held in Nuuk, Greenland in September 2011. We would like to thank the Marie Curie FP7 Research and Training Network GREENCYCLESII, The Nordic Centre of Excellence DEFROST and the International Arctic Science Committee IASC for providing funding which made this meeting possible, as well as the Greenland Institute of Natural Resources together with the Greenland Climate Research Centre for being the host institution. The research leading to these results has received funding from the [European Community's] Seventh Framework Programme (FP7 2007-2013) under grant agreement n° [238366]. Apart from this funding for F.J.W. Parmentier, we also like to acknowledge the Canada Excellence Research Chair (CERC) program for providing funds for S. Rysgaard, both the Mistra Swedish Research Programme for Climate, Impacts and Adaptation (Mistra-SWECIA) and the Lund University Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI) for providing funds for P.A. Miller, and the U.S. National Science Foundation (NSF, grant no. ARC-0902175) and National Atmospheric and Space Administration (NASA, grant no. NNX09AK56G) for providing funds to D.A. Walker. Last but not least, we like to thank Dan Hayes, Rita Wania and Ben Smith for making the TEM6 and LPJ-GUESS WHyMe model runs possible, Uma Bhatt for kindly providing the data for Fig. 2, and Carline Tromp for her thorough critique of text structure.

Author information

Affiliations

Authors

Contributions

F.J.W.P. wrote the main text, but L.L.S and S.R. provided a large part of the text on the ocean CO2 fluxes, while all authors contributed. A.D.McG. and P.A.M provided the TEM6 and LPJ-GUESS WHyMe model runs. Figures 1, 2 and 4 were made by F.J.W.P., and Fig. 3 was made by L.L.S. with assistance from F.J.W.P.

Corresponding author

Correspondence to Frans-Jan W. Parmentier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 262 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parmentier, FJ., Christensen, T., Sørensen, L. et al. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Clim Change 3, 195–202 (2013). https://doi.org/10.1038/nclimate1784

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing