Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

2020 emissions levels required to limit warming to below 2 °C

Abstract

This paper presents a systematic scenario analysis of how different levels of short-term 2020 emissions would impact the technological and economic feasibility of achieving the 2 °C target in the long term. We find that although a relatively wide range of emissions in 2020—from 41 to 55 billion tons of carbon dioxide equivalent (Gt CO2e yr−1)—may preserve the option of meeting a 2 °C target, the size of this ‘feasibility window’ strongly depends on the prospects of key energy technologies, and in particular on the effectiveness of efficiency measures to limit the growth of energy demand. A shortfall of critical technologies—either for technological or socio-political reasons—would narrow the feasibility window, if not close it entirely. Targeting lower 2020 emissions levels of 41–47 Gt CO2e yr−1 would allow the 2 °C target to be achieved under a wide range of assumptions, and thus help to hedge against the risks of long-term uncertainties.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of the two-stage model set-up to quantify the feasible 2020 emission windows to stay below 2 °C.
Figure 2: Feasibility windows for global GHG emissions in 2020 required to limit global temperature increase to below 2 °C relative to pre-industrial levels.
Figure 3: Characteristics of all feasible 2 °C scenarios with intermediate energy demand.

References

  1. Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    CAS  Article  Google Scholar 

  2. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    CAS  Article  Google Scholar 

  3. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

    CAS  Article  Google Scholar 

  4. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    CAS  Article  Google Scholar 

  5. FCCC/CP/2010/7/Add.1 Decision 1/CP.16 (UNFCCC, 2010).

  6. The Emissions Gap Report—Are the Copenhagen Accord Pledges Sufficient to Limit Global Warming to 2 °C or 1.5 °C? (UNEP, 2010).

  7. Rogelj, J. et al. Emission pathways consistent with a 2 °C global temperature limit. Nature Clim. Change 1, 413–418 (2011).

    Article  Google Scholar 

  8. Bowen, A. & Ranger, N. Mitigating Climate Change through Reductions in Greenhouse Gas Emissions: The Science and Economics of Future Paths for Global Annual Emissions (Grantham Research Institute for Climate Change and the Environment, 2009).

    Google Scholar 

  9. Bridging the Emissions Gap - A UNEP Synthesis Report (UNEP, 2011).

  10. Riahi, K., Gruebler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. For. Soc. Change 74 (special issue), 887–935 (2007).

    Article  Google Scholar 

  11. Rao, S. & Riahi, K. The role of Non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century. Energ. J. 27, 177–200 (2006).

    Google Scholar 

  12. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    CAS  Article  Google Scholar 

  13. Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Clim. Change 2, 248–253 (2012).

    Article  Google Scholar 

  14. Anderson, K. & Bows, A. Beyond ‘dangerous’ climate change: Emission scenarios for a new world. Phil. Tran. R. Soc. A 369, 20–44 (2011).

    CAS  Article  Google Scholar 

  15. Roehrl, R. A. & Riahi, K. Technology dynamics and greenhouse gas emissions mitigation: A cost assessment. Technol. Forecast. Soc. Change 63, 231–261 (2000).

    Article  Google Scholar 

  16. Riahi, K. et al. in Global Energy Assessment—Toward a Sustainable Future Ch. 17 (Cambridge Univ. Press, 2012).

    Google Scholar 

  17. Clarke, L. et al. International climate policy architectures: Overview of the EMF 22 International Scenarios. Energy Econ. 31, S64–S81 (2009).

    Article  Google Scholar 

  18. Nakicenovic, N. & Swart, R. IPCC Special Report on Emissions Scenarios (Cambridge Univ. Press, 2000).

    Google Scholar 

  19. Azar, C. et al. The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS). Climatic Change 100, 195–202 (2010).

    CAS  Article  Google Scholar 

  20. IPCC Special Report on Carbon Dioxide Capture and Storage (eds Metz, B., Davidson, O. R., de Coninck, H., Loos, M. & Meyer, L. A.) (IPCC, 2005).

  21. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

  22. Ranger, N. et al. Is it possible to limit global warming to no more than 1.5 °C? Climatic Change 111, 973–981 (2012).

    Article  Google Scholar 

  23. Rogelj, J. et al. Copenhagen Accord pledges are paltry. Nature 464, 1126–1128 (2010).

    CAS  Article  Google Scholar 

  24. Macintosh, A. Keeping warming within the 2 °C limit after Copenhagen. Energ. Policy 38, 2964–2975 (2010).

    Article  Google Scholar 

  25. IPCC Climate Change 2007: Mitigation (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) (Cambridge Univ. Press, 2007).

  26. Den Elzen, M. G. J., van Vuuren, D. P. & van Vliet, J. Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Climatic Change 99, 313–320 (2010).

    Article  Google Scholar 

  27. Smith, S. M. et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nature Clim. Change 2, 535–538 (2012).

    CAS  Article  Google Scholar 

  28. Von Weizsäcker, E., Lovins, A. B. & Lovins, L. H. Factor Four: Doubling Wealth—Halving Resource Use: The New Report to the Club of Rome (Earthscan, 1997).

    Google Scholar 

  29. Van Vliet, J. et al. Copenhagen Accord Pledges imply higher costs for staying below 2 °C warming. Climatic Change 113, 551–561 (2012).

    Article  Google Scholar 

  30. Wise, M. A. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    CAS  Article  Google Scholar 

  31. World Energy Outlook 2011 (IEA, 2011).

  32. Rogelj, J., Hare, W., Chen, C. & Meinshausen, M. Discrepancies in historical emissions point to a wider 2020 gap between 2 °C benchmarks and aggregated national mitigation pledges. Environ. Res. Lett. 6, 024002 (2011).

    Article  Google Scholar 

  33. Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).

    CAS  Article  Google Scholar 

  34. Meinshausen, M., Wigley, T. M. L. & Raper, S. C. B. Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 2: Applications. Atmos. Chem. Phys. 11, 1457–1471 (2011).

    CAS  Article  Google Scholar 

  35. O’Neill, B. C., Riahi, K. & Keppo, I. Mitigation implications of midcentury targets that preserve long-term climate policy options. Proc. Natl Acad. Sci. USA 107, 1011–1016 (2009).

    Article  Google Scholar 

  36. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  37. Meehl, G. A., Covey, C., McAvaney, B., Latif, M. & Stouffer, R. J. Overview of the coupled model intercomparison project. Bull. Am. Meteorol. Soc. 86, 89–93 (2005).

    Article  Google Scholar 

  38. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. 111, D12106 (2006).

    Article  Google Scholar 

  39. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090-U1096 (2008).

    Article  Google Scholar 

  40. McCollum, D. L., Krey, V. & Riahi, K. An integrated approach to energy sustainability. Nature Clim. Change 1, 428–429 (2011).

    Article  Google Scholar 

  41. Rafaj, P., Rao, S., Klimont, Z., Kolp, P. & Schöpp, W. Emission of Air Pollutatnt Implied by Global Long-term Energy Scenarios (IIASA, 2010).

    Google Scholar 

  42. Heyes, C., Klimont, Z., Wagner, F. & Amann, M. Extension of the GAINS Model to Include Short-lived Climate Forcers (IIASA, 2011).

    Google Scholar 

  43. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  44. McCollum, D. L., Krey, V. & Riahi, K. Beyond Rio: Sustainable energy scenarios for the 21st century. Natural Res. Forum 6, 215–230 (2012).

    Article  Google Scholar 

  45. Prather, M. J. et al. Tracking uncertainties in the causal chain from human activities to climate. Geophys. Res. Lett. 36, L05707 (2009).

    Google Scholar 

  46. Van Vuuren, D. P., van Vliet, J. & Stehfest, E. Future bio-energy potential under various natural constraints. Energ. Policy 37, 4220–4230 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Krey, P. Kolp, M. Strubegger and A. Reisinger for their support in developing the model set-up and extracting the results, and A. Grubler and V. Krey for their constructive feedback on the analysis. J.R. was supported by the Swiss National Science Foundation (project 200021-135067) and the IIASA Young Scientists Summer Program 2011. K.R. and D.L.M. greatly acknowledge financial support from the EU-FP7 project AMPERE (FP7-265139).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in designing the research; J.R. performed the research in close collaboration with D.L.M.; all authors contributed to writing the paper.

Corresponding author

Correspondence to Joeri Rogelj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1104 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rogelj, J., McCollum, D., O’Neill, B. et al. 2020 emissions levels required to limit warming to below 2 °C. Nature Clim Change 3, 405–412 (2013). https://doi.org/10.1038/nclimate1758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1758

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing