Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Last chance for carbon capture and storage

Abstract

Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Projected global electricity sources in 2035.
Figure 2: Prospects for CCS deployment.
Figure 3: CCS activity in China.

References

  1. World Energy Outlook 2011 (IEA, 2011); available at http://www.worldenergyoutlook.org

  2. Technology Roadmap: Carbon Capture and Storage (IEA, 2009).

  3. Statistical Review of World Energy 2011 (BP, 2011).

  4. Calvin, K. et al. 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Econ. 31(Supplement 2), S107–S120 (2009).

    Article  Google Scholar 

  5. IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge Univ. Press, 2005).

  6. The Costs of CO2 Capture, Transport and Storage (ZEP, 2011).

  7. Gibbins, J. et al. Retrofitting CO2 Capture to Existing Power Plants (IEAGHG, 2011).

    Google Scholar 

  8. Markusson, N. & Haszeldine, R. S. 'Capture ready' regulation of fossil fuel power plants — Betting the UK's carbon emissions on promises of future technology. Energy Policy 38, 6695–6702 (2010).

    Article  Google Scholar 

  9. CCS readiness at Šoštanj: Ticking boxes or preparing for the future? (Bellona, 2011); available via http://go.nature.com/QAwjX2

  10. Rubin, E. S. & Zhai, H. The cost of carbon capture and storage for natural gas combined cycle power plants. Environ. Sci. Technol. 46, 3076–3084 (2012).

    Article  CAS  Google Scholar 

  11. Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electrcity (NETL, 2010).

  12. Improvement in Power Generation with Post-Combustion Capture of CO2 (IEAGHG, 2004).

  13. Usher, W. & Strachan, N. UK MARKAL Modelling — Examining Decarbonisation Pathways in the 2020s on the Way to Meeting the 2050 Emissions Target Final Report for the Committee on Climate Change (UCL Energy Institute, 2010); available via http://go.nature.com/qUggts

    Google Scholar 

  14. Chalmers, H., Gibbins, J. & Leach, M. Valuing power plant flexibility with CCS: the case of post-combustion capture retrofits. Mitig. Adapt. Strat. Glob. Change 17, 621–649 (2012).

    Article  Google Scholar 

  15. Feasibility study for Europe-wide CO2 infrastructures (ARUP & SCCS, 2010); available via http://go.nature.com/aCBDnf

  16. Haszeldine, R. S. Carbon capture and storage: How green can black be? Science 325, 1647–1652 (2009).

    Article  CAS  Google Scholar 

  17. Progressing Scotland's CO2 Storage Opportunities (SCCS, 2011).

  18. Thibeau, S. & Mucha, V. Have we overestimated saline aquifer CO2 storage capacities? Oil Gas Sci. Technol. 66, 81–92 (2011).

    Article  CAS  Google Scholar 

  19. Cavanagh, A. & Wildgust, N. Pressurization and brine displacement issues for deep saline formation CO2 storage. Energy Procedia 4, 4814–4821 (2011).

    Article  CAS  Google Scholar 

  20. Ehlig-Economides, C. & Economides, M. J. Sequestering carbon dioxide in a closed underground volume. J. Petrol. Sci. Eng. 70, 123–130 (2010).

    Article  Google Scholar 

  21. Cavanagh, A. J., Haszeldine, R. S. & Blunt, M. J. Open or closed? A discussion of the mistaken assumptions in the Economides pressure analysis of carbon sequestration. J. Petrol. Sci. Eng. 74, 107–110 (2010).

    Article  CAS  Google Scholar 

  22. Ehlig-Economides, C. A. & Economides, M. J. Reply to: Open or closed? A discussion of the mistaken assumptions in the Economides analysis of carbon sequestration. J. Petrol. Sci. Eng. 74, 111–112 (2010).

    Article  CAS  Google Scholar 

  23. Zhou, Q., Birkholzer, J. T., Tsang, C-F. & Rutqvist, J. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenh. Gas Con. 2, 626–639 (2008).

    Article  CAS  Google Scholar 

  24. Le Gallo, Y. Post-closure migration for CO2 geological storage and regional pressure inferences. Energy Procedia 1, 3259–3266 (2009).

    Article  CAS  Google Scholar 

  25. Bailey, W. et al. Water control. Oilfield Rev. 12, 30–51 (2000).

    Google Scholar 

  26. Rae, M. & Helgesen, O. K. Snøhvit-CO2 sprenger reservoaret. Tesnik Ukerblad (19 May 2011); available at http://www.tu.no/olje-gass/article286534.ece

  27. Hosa, A., Esentia, M., Stewart, J. & Haszeldine, S. Injection of CO2 into saline formations: Benchmarking worldwide projects. Chem. Eng. Res. Des. 89, 1855–1864 (2011).

    Article  CAS  Google Scholar 

  28. Smith, M., Campbell, D., Mackay, E. & Polson, D. CO2 Aquifer Storage Site Evaluation and Monitoring (CASSEM, 2011).

    Google Scholar 

  29. Watson, J. et al. Carbon Capture and Storage: Realising the potential? (UKERC, 2012).

    Google Scholar 

  30. Chalmers, H. & Gibbins, J. Carbon capture and storage: More energy or less carbon? J. Renew. Sustain. Energy 2, 031006 (2010).

    Article  Google Scholar 

  31. Rutherford, A. (ed.) Global CCS Projects Map (SCCS,2012); available at http://www.sccs.org.uk/map.html

    Google Scholar 

  32. The Global Status of CCS (Global Carbon Carbon Capture and Storage Institute, 2011); available via http://go.nature.com/HHblMC

  33. G8 Hokkaido Toyako Summit Leaders Declaration (G8, 2008); available via http://go.nature.com/l8fs4j

  34. Meadowcroft, J. & Langhelle, O. in Caching the Carbon: The Politics and Policy of Carbon Capture and Storage (eds Meadowcroft, J. & Langhelle, O.) 267–296 (Edward Elgar, 2009).

    Book  Google Scholar 

  35. Pollak, M. F., Johnson, J. A. & Wilson, E. J. The geography of CCS regulatory development in the U.S. Energy Procedia 1, 4543–4550 (2009).

    Article  Google Scholar 

  36. Pollak, M., Phillips, S. J. & Vajjhala, S. Carbon capture and storage policy in the United States: A new coalition endeavors to change existing policy. Glob. Environ. Change 21, 313–323 (2011).

    Article  Google Scholar 

  37. Energy Technology Perspectives 2012 (IEA, 2012).

  38. Fairley, P. Cleaner Coal Faces an Uncertain Future (MIT Technology Review, 2011); available via http://go.nature.com/2ISVzd

    Google Scholar 

  39. Von Stechow, C., Watson, J. & Praetorius, B. Policy incentives for carbon capture and storage technologies in Europe: A qualitative multi-criteria analysis. Glob. Environ. Change 21, 346–357 (2011).

    Article  Google Scholar 

  40. Energy Roadmap 2050 (EU, 2011); available via http://go.nature.com/drHaGh

  41. Roberts, J. J., Wood, R. A. & Haszeldine, R. S. Assessing the health risks of natural CO2 seeps in Italy. Proc. Natl Acad. Sci. 108, 16545–16548 (2011).

    Article  CAS  Google Scholar 

  42. Stone, E. J., Lowe, J. A. & Shine, K. P. The impact of carbon capture and storage on climate. Energy Environ. Sci. 2, 81–91 (2009).

    Article  CAS  Google Scholar 

  43. Gerlagh, R. & van der Zwaan, B. Evaluating uncertain CO2 abatement over the very long term. Environ. Model. Assess. 17, 1–12 (2011).

    Google Scholar 

  44. Tollefson, J. Low-cost carbon-capture project sparks interest. Nature 469, 276–277 (2011).

    Article  CAS  Google Scholar 

  45. United Nations Climate Change Secretariat Durban Conference Delivers Breakthrough in International Community's Response to Climate Change (UNFCCC, 2011); available via http://go.nature.com/4DFLUT

  46. De Conick, H., Stephens, J. C. & Metz, B. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration. Energy Policy 37, 2161–2165 (2009).

    Article  Google Scholar 

  47. Markusson, N., Shackley, S. & Evar, B. The Social Dynamics of Carbon Capture and Storage (Routledge, 2012).

    Book  Google Scholar 

  48. Rai, V., Victor, D. G. & Thurber, M. C. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies. Energy Policy 38, 4089–4098 (2010).

    Article  Google Scholar 

  49. Seligsohn, D., Liu, Y., Forbes, S., Dongjie, Z. & West, L. CCS in China: Toward an Environmental, Health, and Safety Regulatory Framework (WRI, 2010).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from Scottish Funding Council (V.S., R.S.H), UK Natural Environment Research Council (S.G.), UK Energy Research Centre (N.M.). We thank colleagues at the Scottish Carbon Capture and Storage centre www.sccs.org.uk for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Scott.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Scott, V., Gilfillan, S., Markusson, N. et al. Last chance for carbon capture and storage. Nature Clim Change 3, 105–111 (2013). https://doi.org/10.1038/nclimate1695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing