Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temperature as a potent driver of regional forest drought stress and tree mortality

Subjects

Abstract

As the climate changes, drought may reduce tree productivity and survival across many forest ecosystems; however, the relative influence of specific climate parameters on forest decline is poorly understood. We derive a forest drought-stress index (FDSI) for the southwestern United States using a comprehensive tree-ring data set representing AD 1000–2007. The FDSI is approximately equally influenced by the warm-season vapour-pressure deficit (largely controlled by temperature) and cold-season precipitation, together explaining 82% of the FDSI variability. Correspondence between the FDSI and measures of forest productivity, mortality, bark-beetle outbreak and wildfire validate the FDSI as a holistic forest-vigour indicator. If the vapour-pressure deficit continues increasing as projected by climate models, the mean forest drought-stress by the 2050s will exceed that of the most severe droughts in the past 1,000 years. Collectively, the results foreshadow twenty-first-century changes in forest structures and compositions, with transition of forests in the southwestern United States, and perhaps water-limited forests globally, towards distributions unfamiliar to modern civilization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between the FDSI and climate.
Figure 2: Measurements of forest productivity and mortality overlaid on the FDSI (red, right y axis).
Figure 3: Eleven-year smoothed FDSI for AD 1000–2012.
Figure 4: Observed and modelled climate and forest drought-stress.
Figure 5: Extreme drought stress.
Figure 6: Where have trees died?

Similar content being viewed by others

References

  1. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manage. 259, 660–684 (2010).

    Article  Google Scholar 

  2. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  CAS  Google Scholar 

  3. Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    Article  CAS  Google Scholar 

  4. Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).

    Article  Google Scholar 

  5. Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).

    Article  CAS  Google Scholar 

  6. Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article  CAS  Google Scholar 

  7. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 amazon drought. Science 331, 554 (2011).

    Article  CAS  Google Scholar 

  8. Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Clim. Change 1, 467–471 (2011).

    Article  Google Scholar 

  9. Bentz, B. J. et al. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. Bioscience 60, 602–613 (2010).

    Article  Google Scholar 

  10. Schwalm, C. R. et al. Reduction in carbon uptake during turn of the century drought in western North America. Nature Geosci. 5, 551–556 (2012).

    Article  CAS  Google Scholar 

  11. Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21298–21294 (2010).

    Google Scholar 

  12. Weiss, J. L., Castro, C. L. & Overpeck, J. T. Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures. J. Clim. 22, 5918–5931 (2009).

    Article  Google Scholar 

  13. Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Clim. 11, 3128–3147 (1998).

    Article  Google Scholar 

  14. Diffenbaugh, N. S., Ashfaq, M. & Scherer, M. Transient regional climate change: Analysis of the summer climate response in a high-resolution, century-scale ensemble experiment over the continental United States. J. Geophys. Res. 116, D24111 (2011).

    Article  Google Scholar 

  15. Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).

    Article  CAS  Google Scholar 

  16. McDowell, N. G. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    Article  Google Scholar 

  17. Fritts, H. C. Tree Rings and Climate (Academic, 1976).

    Google Scholar 

  18. Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    Article  CAS  Google Scholar 

  19. McDowell, N. G., Allen, C. D. & Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 16, 399–415 (2010).

    Article  Google Scholar 

  20. St. George, S., Meko, D. M. & Cook, E. R. The seasonality of precipitation signals embedded within the North American Drought Atlas. Holocene 20, 983–988 (2010).

    Article  Google Scholar 

  21. Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought. Proc. Natl Acad. Sci. USA 106, 7063–7066 (2009).

    Article  CAS  Google Scholar 

  22. McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).

    Article  Google Scholar 

  23. Shaw, J. D., Steed, B. E. & DeBlander, L. T. Forest inventory and analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands? J. Forestry 103, 280–285 (2005).

    Google Scholar 

  24. Huang, C., Asner, G. P., Barger, N. N., Neff, J. C. & Floyd, M. L. Regional aboveground live carbon losses due to drought-induced tree dieback in piñon–juniper ecosystems. Remote Sens. Environ. 114, 1471–1479 (2010).

    Article  Google Scholar 

  25. Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).

    Article  Google Scholar 

  26. Grissino Mayer, H. D. & Swetnam, T. W. Century scale climate forcing of fire regimes in the American Southwest. Holocene 10, 213–220 (2000).

    Article  Google Scholar 

  27. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  CAS  Google Scholar 

  28. Furniss, R. L. & Carolin, V. M. Western Forest Insects (United States Department of Agriculture (USDA) Forest Service (FS), 1977).

    Book  Google Scholar 

  29. Allen, C. D. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10, 797–808 (2007).

    Article  Google Scholar 

  30. Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl Acad. Sci. USA 95, 14839–14842 (1998).

    Article  CAS  Google Scholar 

  31. Betancourt, J. L., Pierson, E. A., Rylander, K. A., Fairchild-Parks, J. A. & Dean, J. S. in Managing Piñon-juniper Ecosystems for Sustainability and Social Needs (eds Aldon, A. F. & Shaw, D. W.) 42–62 (USDA Forest Service, 1993).

    Google Scholar 

  32. Savage, M. & Mast, J. N. How resilient are southwestern ponderosa pine forests after crown fires? Can. J. Forest Res. 35, 967–977 (2005).

    Article  Google Scholar 

  33. Swetnam, T. W. & Betancourt, J. L. Fire-southern oscillation relations in the southwestern United States. Science 249, 1017–1020 (1990).

    Article  CAS  Google Scholar 

  34. Herweijer, C., Seager, R., Cook, E. R. & Emilie-Geay, J. North American droughts of the last millennium from a gridded network of tree-ring data. J. Clim. 20, 1353–1376 (2007).

    Article  Google Scholar 

  35. Potter, L. D. Phytosociological study of San Augustin Plains, New Mexico. Ecol. Monogr. 27, 114–136 (1957).

    Article  Google Scholar 

  36. Plummer, F. G., Rixon, T. F. & Dodwell, A. Forest Conditions in the Black Mesa Forest Reserve, Arizona. Series H (Government Printing Office, 1904).

    Google Scholar 

  37. Stahle, D. W. et al. Tree-ring data document 16th century megadrought over North America. EOS Trans. 81, 121–121 (2000).

    Article  Google Scholar 

  38. Grissino-Mayer, H. D. in Tree Rings, Environment, and Humanity (eds Dean, J. S., Meko, D. M. & Swetnam, T. W.) 191–204 (Radiocarbon, 1996).

    Google Scholar 

  39. Dean, J. S. The medieval warm period on the southern Colorado Plateau. Climatic Change 26, 225–241 (1994).

    Article  Google Scholar 

  40. Fall, P. L., Kelso, G. & Markgraf, V. Paleoenvironmental reconstruction at Canyon del Muerto, Arizona, based on principal-component analysis. J. Archaeol. Sci. 8, 297–307 (1981).

    Article  Google Scholar 

  41. IPCC Special Report on Emissions Scenarios (eds Nakicenovic, N. & Swart, R.) (Cambridge Univ. Press, 2000).

  42. Williams, A. P., Michaelsen, J., Leavitt, S. W. & Still, C. J. Using tree rings to predict the response of tree growth to climate change in the continental United States during the twenty-first century. Earth Interact. 14, 1–20 (2010).

    Article  Google Scholar 

  43. Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).

    Article  CAS  Google Scholar 

  44. Goforth, B. R. & Minnich, R. A. Densification, stand-replacement wildfire, and extirpation of mixed conifer forest in Cuyamaca Rancho State Park, southern California. Forest Ecol. Manage. 256, 36–45 (2008).

    Article  Google Scholar 

  45. Räisänen, J. CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. J. Clim. 14, 2088–2104 (2001).

    Article  Google Scholar 

  46. Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535–E543 (2012).

    Article  CAS  Google Scholar 

  47. Cayan, D. R. et al. Evolution toward greater droughts in the SW United States. Proc. Natl Acad. Sci. USA 107, 21271–21276 (2010).

    Article  CAS  Google Scholar 

  48. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  49. Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article  Google Scholar 

  50. Seidel, D. J., Fu, Q., RanDel, W. J. & Reichler, T. S. J. Widening of the tropical belt in a changing climate. Nature Geosci. 1, 21–24 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by LANL-LDRD and DOE-BER. We acknowledge contributors to the International Tree-Ring Databank and funding by the NSF (grant 0823090) for tree-ring data. We thank contributors of fire-scar data to the FACS database, accessed with assistance from E. Bigio. Unpublished fire-scar data donated by C. Aoki, P. Brown, E. Heyerdahl, P. Iniguez, M. Kaib and R. Wu. J. Paschke provided access to USFS FHTET data. M. Brown provided access to GIMMS AVHRR NDVI data. Dynamically downscaled model climate data came from NARCCAP, funded by NSF, DOE, NOAA and EPA. We appreciate constructive comments from P. Brown, K. Cavanaugh, M. Crimmins, P. Fulé, S. Garrity, J. Grahame, D. Gutzler, J. Hicke, X. Jiang, S. Leavitt, M. Massenkoff, A. Meddens, J. Michaelsen, C. Millar, B. Osborn, H. Powers, T. Rahn, N. Stephenson, C. Still, C. Tague and C. Xu.

Author information

Authors and Affiliations

Authors

Contributions

A.P.W., C.D.A., A.K.M., D.G., C.A.W., D.M.M., T.W.S., S.A.R., R.S., M.C. and N.G.M. conceived and designed the experiments. A.P.W. performed the experiments. A.P.W. and E.R.C. analysed the data. A.K.M., D.G., C.A.W., C.G., D.M.M., T.W.S., S.A.R., H.D.G-M., J.S.D. and E.R.C. contributed data. A.P.W., C.D.A., A.K.M., D.G., C.A.W., D.M.M., T.W.S., S.A.R., R.S., H.D.G-M. and N.G.M. wrote the paper.

Corresponding author

Correspondence to A. Park Williams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park Williams, A., Allen, C., Macalady, A. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Clim Change 3, 292–297 (2013). https://doi.org/10.1038/nclimate1693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing