Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limiting global warming to 2 °C is unlikely to save most coral reefs

Abstract

Mass coral bleaching events have become a widespread phenomenon causing serious concerns with regard to the survival of corals. Triggered by high ocean temperatures, bleaching events are projected to increase in frequency and intensity. Here, we provide a comprehensive global study of coral bleaching in terms of global mean temperature change, based on an extended set of emissions scenarios and models. We show that preserving >10% of coral reefs worldwide would require limiting warming to below 1.5 °C (atmosphere–ocean general circulation models (AOGCMs) range: 1.3–1.8 °C) relative to pre-industrial levels. Even under optimistic assumptions regarding corals’ thermal adaptation, one-third (9–60%, 68% uncertainty range) of the world’s coral reefs are projected to be subject to long-term degradation under the most optimistic new IPCC emissions scenario, RCP3-PD. Under RCP4.5 this fraction increases to two-thirds (30–88%, 68% uncertainty range). Possible effects of ocean acidification reducing thermal tolerance are assessed within a sensitivity experiment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Heat stress projections at the example location of Tuvalu (10.75° S, 180°).
Figure 2: Thermal stress at different levels of global warming.
Figure 3: Projected probabilistic fraction of the world’s coral reefs subject to long-term degradation under the RCPs.

References

  1. 1

    Wilkinson, C. Status of Coral Reefs of The World: 2004 (Global Coral Reef Monitoring Network, 2004).

    Google Scholar 

  2. 2

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Shamberger, K. E. F. et al. Calcification and organic production on a Hawaiian coral reef. Mar. Chem. 127, 64–75 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

    Article  Google Scholar 

  5. 5

    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population–density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).

    Article  Google Scholar 

  6. 6

    Eakin, C. M. et al. Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).

    Article  Google Scholar 

  7. 7

    Baker, A., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).

    Article  Google Scholar 

  8. 8

    Liu, G., Skirving, W. J. & Strong, A. E. Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching. Eos Trans. 84, 137–144 (2003).

    Article  Google Scholar 

  9. 9

    Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. 10th Int. Coral Reef Symp. 1783–1793 (International Coral Reef Symposium (ICRS) Proceedings, 2004).

    Google Scholar 

  10. 10

    Donner, S. D. Coping with commitment: Projected thermal stress on coral reefs under different future scenarios. Plos ONE 4, e5712 (2009).

    Article  Google Scholar 

  11. 11

    Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Guldberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol. 11, 2251–2265 (2005).

    Article  Google Scholar 

  12. 12

    Mitchell, J., Johns, T., Eagles, M., Ingram, W. & Davis, R. Towards the construction of climate change scenarios. Climatic Change 41, 547–581 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Simpson, M. C. et al. An Overview of Modelling Climate Change Impacts in the Caribbean Region with Contribution from the Pacific Islands (United Nations Development Programme, 2009).

  14. 14

    Hoeke, R. K., Jokiel, P. L., Buddemeier, R. W. & Brainard, R. E. Projected changes to growth and mortality of Hawaiian corals over the next 100 years. PLoS ONE 6, e18038 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Donner, S. D, Knutson, T. R. & Oppenheimer, M. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event. Proc. Natl Acad. Sci. USA 104, 5483 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Barshis, D. J. et al. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity? Mol. Ecol. 19, 1705–1720 (2010).

    CAS  Article  Google Scholar 

  17. 17

    McClanahan, T. R. et al. in Ecological Studies Vol. 205 (ed. Caldwell, M. M.) 121–138 (Springer, 2009).

    Google Scholar 

  18. 18

    Yee, S. H., Santavy, D. L. & Barron, M. G. Comparing environmental influences on coral bleaching across and within species using clustered binomial regression. Ecol. Model. 218, 162–174 (2008).

    Article  Google Scholar 

  19. 19

    Hoegh-Guldberg, O., Ortiz, J. C. & Dove, S. The future of coral reefs. Science 334, 1494–1495 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Response to ‘the future of coral reefs’. Science 334 (2011).

  22. 22

    Weis, V. M. The susceptibility and resilience of corals to thermal stress: Adaptation, acclimatization or both? Mol. Ecol. 19, 1515–1517 (2010).

    Article  Google Scholar 

  23. 23

    Kleypas, J. A. & Langdon, C. et al. in Coral Reefs and Climate Change: Science and Management Vol. 61 (ed. Phinney, J. T.) 73–110 (AGU Monograph Series, Coastal and Estuarine Studies, Geophys. Union, 2006).

    Book  Google Scholar 

  24. 24

    Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, C09S07 (2005).

    Article  Google Scholar 

  25. 25

    Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Ohde, S. & van Woesik, R. Carbon dioxide flux and metabolic processes of coral reefs, Okinawa. Bull. Mar. Sci. 65, 559–576 (1999).

    Google Scholar 

  27. 27

    Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36, L05606 (2009).

    Article  Google Scholar 

  28. 28

    Silverman, J., Lazar, B. & Erez, J. Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J. Geophys. Res. 112, C05004 (2007).

    Article  Google Scholar 

  29. 29

    Cohen, A. L., McCorkle, D. C., de Putron, S. J., Gaetani, G. A. & Rose, K. A. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: Insights into the biomineralization response to ocean acidification. Geochem. Geophys. Geosyst. 10 (2009).

  30. 30

    Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Wooldridge, S. A. A new conceptual model for the warm-water breakdown of the coral–algae endosymbiosis. Mar. Freshwat. Res. 60, 483–496 (2009).

    CAS  Article  Google Scholar 

  32. 32

    Hoegh-Guldberg, O. & Jones, R. J. Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser. 183, 73–86 (1999).

    Article  Google Scholar 

  33. 33

    UNFCCC The Cancun Agreements: Outcome of the Work of the Ad Hoc Working Group on Long-term Cooperative Action Under the Convention FCCC/CP/2010/7/Add.1. (UNFCCC, 2010); available via http://go.nature.com/vKU9wU.

  34. 34

    Buddemeier, R. W., Lane, D. R. & Martinich, J. A. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study. Climatic Change 109, 375–397 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450 (2007).

  37. 37

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwat. Res. 50, 839–866 (1999).

    Article  Google Scholar 

  38. 38

    Jansen, E. & Overpeck, J. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 433–498 (Cambridge Univ. Press, 2007).

    Google Scholar 

  39. 39

    Caldeira, K. & Wickett, M. E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110, C09S04 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The work on this analysis was supported by the UFOPLAN project FKZ 370841103 through the German Federal Environment Agency and by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11_II_093_Global_A_SIDS and LDCs). We thank J. Rogelj for his very helpful comments on the manuscript. O.H-G. would like to recognize support from the Australian Research Council Centre of Excellence in Reef Studies and the Global Change Institute. We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison and the WCRP1’s Working Group on Coupled Modelling for making available the WCRP CMIP3 multi-model data set.

Author information

Affiliations

Authors

Contributions

A.G., K.F. and M. Meinshausen contributed equally to this paper. K.F. and M. Meinshausen designed the study. A.G., K.L. and M. Mengel analysed data with contributions by K.F. and M. Meinshausen. M. Meinshausen, K.F., S.D. and O.H-G. wrote the paper.

Corresponding author

Correspondence to K. Frieler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2200 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frieler, K., Meinshausen, M., Golly, A. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Clim Change 3, 165–170 (2013). https://doi.org/10.1038/nclimate1674

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing