Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nutrient enrichment can increase the susceptibility of reef corals to bleaching



Mass coral bleaching, resulting from the breakdown of coral–algal symbiosis has been identified as the most severe threat to coral reef survival on a global scale1. Regionally, nutrient enrichment of reef waters is often associated with a significant loss of coral cover and diversity2. Recently, increased dissolved inorganic nitrogen concentrations have been linked to a reduction of the temperature threshold of coral bleaching3, a phenomenon for which no mechanistic explanation is available. Here we show that increased levels of dissolved inorganic nitrogen in combination with limited phosphate concentrations result in an increased susceptibility of corals to temperature- and light-induced bleaching. Mass spectrometric analyses of the algal lipidome revealed a marked accumulation of sulpholipids under these conditions. Together with increased phosphatase activities, this change indicates that the imbalanced supply of dissolved inorganic nitrogen results in phosphate starvation of the symbiotic algae. Based on these findings we introduce a conceptual model that links unfavourable ratios of dissolved inorganic nutrients in the water column with established mechanisms of coral bleaching. Notably, this model improves the understanding of the detrimental effects of coastal nutrient enrichment on coral reefs, which is urgently required to support knowledge-based management strategies to mitigate the effects of climate change.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bleaching patterns of corals at different nutrient concentrations.
Figure 2: Responses of zooxanthellae of M. foliosa after phosphate starvation.
Figure 3: Response of corals to phosphate starvation, light and heat stress.
Figure 4: Conceptual model of nutrient-starvation stress in zooxanthellae using the example of phosphate starvation.

Similar content being viewed by others


  1. Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    Article  CAS  Google Scholar 

  2. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).

    Article  CAS  Google Scholar 

  3. Wooldridge, S. A. Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Mar. Pollut. Bull. 58, 745–751 (2009).

    Article  CAS  Google Scholar 

  4. Dubinsky, Z. & Jokiel, P. L. Ratio of energy and nutrient fluxes regulates symbiosis between zooxanthellae and corals. Pacif. Sci. 48, 313–324 (1994).

    Google Scholar 

  5. Tchernov, D. et al. Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc. Natl Acad. Sci. USA 108, 9905–9909 (2011).

    Article  CAS  Google Scholar 

  6. Szmant, A. M. Nutrient enrichment on coral reefs: Is it a major cause of coral reef decline? Estuaries 25, 743–766 (2002).

    Article  CAS  Google Scholar 

  7. Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: A case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).

    Article  Google Scholar 

  8. Bongiorni, L., Shafir, S., Angel, D. & Rinkevich, B. Survival, growth and gonad development of two hermatypic corals subjected to in situ fish-farm nutrient enrichment. Mar. Ecol. Prog. Ser. 253, 137–144 (2003).

    Article  Google Scholar 

  9. Brodie, J., Devlin, M., Haynes, D. & Waterhouse, J. Assessment of the eutrophication status of the Great Barrier Reef lagoon (Australia). Biogeochemistry 106, 281–302 (2011).

    Article  CAS  Google Scholar 

  10. Parkhill, J-P., Maillet, G. & Cullen, J. J. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J. Phycol. 37, 517–529 (2001).

    Article  Google Scholar 

  11. Miller, D. J. & Yellowlees, D. Inorganic nitrogen uptake by symbiotic marine cnidarians: A critical review. Proc. R. Soc. Lond. B 237, 109–125 (1989).

    Article  Google Scholar 

  12. Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B 236, 311–324 (1989).

    Article  Google Scholar 

  13. Rahav, O., Dubinsky, Z., Achituv, Y. & Falkowski, P. G. Ammonium metabolism in the zooxanthellate coral, stylophora pistillata. Proc. R. Soc. Lond. B 236, 325–337 (1989).

    Article  CAS  Google Scholar 

  14. Berkelmans, R. & Willis, B. L. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef. Coral Reefs 18, 219–228 (1999).

    Article  Google Scholar 

  15. D’Angelo, C. & Wiedenmann, J. An experimental mesocosm for long-term studies of reef corals. J. Mar. Biol. Assoc. UK 92, 769–775 (2012).

    Article  Google Scholar 

  16. Warner, M. E., Lesser, M. P. & Ralph, P. J. in Chlorophyll Fluorescence in Aquatic Sciences: Methods and Applications (eds Suggett, D. J., Prasil, O. & Borowitzka, M.) (Springer, 2010).

    Google Scholar 

  17. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshwat. Res. 50, 839–866 (1999).

    Article  Google Scholar 

  18. Jones, R. J. & Hoegh-Guldberg, O. Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: Photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ. 24, 89–99 (2001).

    Article  CAS  Google Scholar 

  19. Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Glob. Change Biol. 11, 1–11 (2005).

    Article  Google Scholar 

  20. Annis, E. R. & Cook, C. B. Alkaline phosphatase activity in symbiotic dinoflagellates (zooxanthellae) as a biological indicator of environmental phosphate exposure. Mar. Ecol. Prog. Ser. 245, 11–20 (2002).

    Article  CAS  Google Scholar 

  21. Frentzen, M. Phosphatidylglycerol and sulphoquinovosyldiacylglycerol: Anionic membrane lipids and phosphate regulation. Curr. Opin. Plant Biol. 7, 270–276 (2004).

    Article  CAS  Google Scholar 

  22. Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).

    Article  CAS  Google Scholar 

  23. Tchernov, D. et al. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl Acad. Sci. USA 101, 13531–13535 (2004).

    Article  CAS  Google Scholar 

  24. Banaszak, A. T., Ayala-Schiaffino, B. N., Rodriguez-Roman, A., Enriquez, J. & Iglesias-Prieto, R. Response of Millepora alcicornis (Milleporina : Milleporidae) to two bleaching events at Puerto Morelos reef, Mexican Caribbean. Rev. Biol. Trop. 51, 57–66 (2003).

    Google Scholar 

  25. Lesser, M. P. Oxidative stress in marine environments: Biochemistry and physiological ecology. Annu. Rev. Physiol. 68, 253–278 (2006).

    Article  CAS  Google Scholar 

  26. Shick, J. M., Iglic, K., Wells, C. G., Trick, J. D. & Dunlap, W. C. Responses to iron limitation in two colonies of Stylophora pistillata exposed to high temperature: Implications for coral bleaching. Limnol. Oceanogr. 56, 813–828 (2011).

    Article  CAS  Google Scholar 

  27. Hartle-Mougiou, K. et al. Diversity of zooxanthellae from corals and sea anemones after long-term aquarium culture. J. Mar. Biol. Assoc. UK 92, 687–691 (2012).

    Article  CAS  Google Scholar 

  28. Gordon, L. I., Jennings, J. C. J., Ross, A. A. & Krest, J. M. A suggested protocol for continuous flow automated analysis of seawater nutrients in the WOCE Hydrographic Program and the Joint Global Ocean Fluxes Study. OSU Coll. of Oc. Descr. Chem. Oc. Grp. Tech. Rpt. 92-1 (1992).

  29. Patey, M. D. et al. Determination of nitrate and phosphate in seawater at nanomolar concentrations. Trends Anal. Chem. 27, 169–182 (2008).

    Article  CAS  Google Scholar 

  30. D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).

    Article  Google Scholar 

Download references


The study was financially supported by the Deutsche Forschungsgemeinschaft (DFG Wi1990/2-1 to J.W.), NERC (NE/H012303/1, NE/I01683X/1 to J.W., studentship to E.G.S./J.W.), SENSEnet (EU FP7, PITN-GA-2009-237868) to F.E.L., and EPSRC/IFLS (Bridging the Gap grant to J.W., A.D.P. and E.P.A.). We acknowledge the Tropical Marine Centre, London, UK and Tropic Marin, Wartenberg, Germany for sponsoring the coral reef laboratory.

Author information

Authors and Affiliations



J.W. and C.D.A. contributed equally, conceiving the conceptual model of nutrient-stress-mediated coral bleaching, the experimental strategies and set-up. J.W., C.D.A., E.G.S., A.N.H. and F-E.L. conducted the experiments. All authors contributed to the data analyses. J.W., C.D.A., E.G.S., A.N.H., A.D.P. and E.P.A. wrote the paper.

Corresponding author

Correspondence to Jörg Wiedenmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 617 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wiedenmann, J., D’Angelo, C., Smith, E. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Clim Change 3, 160–164 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing